PCT

REC'D 10 MAY 2000

WIPO

PCT

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

(Artikel 36 und Regel 70 PCT)

		(/ trainer ee and res			
Aktenzeichen des 98/1005 PCT	s Anmelders oder Anwalts	WEITERES VORGEHEN	siehe Mitte vorläufigen	ilung über die Übersendung des internationalen Prüfungsbericht (Formblatt PCT/IPEA/416)	
	ktonzoichon	Internationales Anmeldedatum	Tag/Monat/Jahr)	Prioritätsdatum (Tag/Monat/Tag)	
Internationales Al PCT/DE99/00		15/01/1999	, ug ,,	16/01/1998	
		nationale Klassifikation und IPK			
B41C1/045	tentkiassification (IPK) oder	nationale Nassiikation und ii K			
Anmelder	GER DRUCKMASCHI	NEN AG et al			
1. Dieser inte Behörde e	rnationale vorläufige Prü rstellt und wird dem Anm	fungsbericht wurde von der n elder gemäß Artikel 36 übern	nit der internati nittelt.	onale vorläufigen Prüfung beauftragte	
2. Dieser BE	RICHT umfaßt insgesam	t 5 Blätter einschließlich dies	es Deckblatts.		
und/o/	der Zeichnungen, die geä	indert wurden und diesem Be	richt zugrunde	ätter mit Beschreibungen, Ansprüchen liegen, und/oder Blätter mit vor dieser itt 607 der Verwaltungsrichtlinien zum PCT)	
Diese Anla	agen umfassen insgesan	nt 19 Blätter.			
3. Dieser Bei	richt enthält Angaben zu				
ı 🛛		s			
			simalaninaha T#4	inkeit und gewerbliche Anwendharkeit	
			nnderische Fai	igkeit und gewerbliche Anwendbarkeit	
IV □ V ⊠	Regründete Feststellur		ich der Neuhei Ingen zur Stütz	t, der erfinderische Tätigkeit und der zung dieser Feststellung	
vı 🗆					
VII ⊠	Bestimmte Mängel der	internationalen Anmeldung			
VIII ⊠					
Datum der Einre	eichung des Antrags	Date	um der Fertigstel	lung dieses Berichts	
06/07/1999				0 9 0x 00	
Name und Posta Prüfung beauftra	anschrift der mit der internati agten Behörde:	onalen vorläufigen Bev	ollmächtigter Bed		
<i>M</i> □-4	ropäisches Patentamt 80298 München 1. +49 89 2399 - 0 Tx: 52365		ch, J-M		
	x: +49 89 2399 - 4465	•	Nr. +49 89 2399	2979	

INTERNATIONALER VORLÄUFIGER **PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/DE99/00052

I.	Gru	ndlage des Berich	nts					
1.	Artik	er Bericht wurde e kel 14 hin vorgeleg t beigefügt, weil sie	t wurden, geltei	n im R	ahmen diese	lätter, die de es Berichts a	em Anmeldeamt auf e als "ursprünglich eing	ine Aufforderung nach ereicht" und sind ihm
	Bes	chreibung, Seiter	n;					
	1-15	5	eingegangen a	am	2	28/01/2000	mit Schreiben vom	26/01/2000
	Pate	entansprüche, Nr.	. :					
	1-9		eingegangen	am	2	28/01/2000	mit Schreiben vom	26/01/2000
	Zeid	chnungen, Blätter	:					
	1/1		ursprüngliche	Fassı	ıng			
2.	Auf	grund der Ānderun	gen sind folger	nde Ur	iterlagen fort	gefallen:		
		Beschreibung,	Seiten:					
	×	Ansprüche,	Nr.:	1	0-16			
		Zeichnungen,	Blatt:					
3.		Dieser Bericht ist angegebenen Grü eingereichten Fas	ũnden nach Au	ffassu	ng der Behö	rde über det	lerungen erstellt word n Offenbarungsgehalt	en, da diese aus den in der ursprünglich
4.	Etw	aige zusätzliche B	emerkungen:					
V.	. Be	gründete Feststel werblichen Anwer	lung nach Arti ndbarkeit; Unt	ikel 35 erlage	(2) hinsicht n und Erklä	lich der Ne rungen zur	uheit, der erfinderisc Stützung dieser Fes	chen Tätigkeit und de ststellung
1.	Fes	ststellung						
	Ne	uheit (N)		Ja: Nein:	Ansprüche Ansprüche	1-9		
	Erf	inderische Tätigkei	it (ET)	Ja: Nein:	Ansprüche Ansprüche	1-9		

Ansprüche

Nein: Ansprüche

Ja:

1-9

Gewerbliche Anwendbarkeit (GA)

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

Internationales Aktenzeichen PCT/DE99/00052

2. Unterlagen und Erklärungen siehe Beiblatt

VII. Bestimmte Mängel der internationalen Anmeldung

Es wurde festgestellt, daß die internationale Anmeldung nach Form oder Inhalt folgende Mängel aufweist: siehe Beiblatt

VIII. Bestimmte Bemerkungen zur internationalen Anmeldung

Zur Klarheit der Patentansprüche, der Beschreibung und der Zeichnungen oder zu der Frage, ob die Ansprüche in vollem Umfang durch die Beschreibung gestützt werden, ist folgendes zu bemerken:

siehe Beiblatt

PUNKT V:

Stand der Technik:

Das Dokument EP-A-0595324, das in der Anmeldung erwähnt ist, beschreibt ein Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine, in dem alle Merkmale des Oberbegriffs des Patentanspruchs 1 enthalten sind.

Aufgabe:

Aufgabe der Erfindung ist es, ein Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine derart zu verbessern, daß ohne Kenntnis der einzelnen Übertragungsfunktionen und Randbedingungen ein weitestgehender automatischer und optimaler Ablauf der Kalibrierung gewährleistet ist (schnellere Kalibrierung; verkleinerte Anzahl der einzelnen Abläufe).

Lösung:

Die Kombination der Merkmale des kennzeichnenden Teils des Patentanspruchs 1, nämlich, daß zur Verkürzung der Kalibrierungszeit (i) bei jedem Ablauf d) bis g) die Istabmessungen der Näpfchen mit den Sollabmessungen verglichen werden, (j) falls die Istabmessungen außerhalb des Toleranzbereichs liegen, die Übertragungsfunktionen neu berechnet werden, (k) die Differenzwerte unter Berücksichtigung der neu berechneten Übertragungsfunktionen ermittelt werden und (I) die Signalwerte mit den neuen Differenzwerten korrigiert werden, ist in dem Stand der Technik weder offenbart noch nahegelegt.

Jedoch, obwohl der Anspruch 1 die Erfordernisse des Artikels 33 PCT in bezug auf den Stand der Technik zu erfüllen scheint, sind Änderungen dieses Anspruchs erforderlich, um den in Punkt VIII.1. stehenden Einwand zu beheben.

PUNKT VII:

- Der Satz in der Beschreibung auf Seite 2, Zeilen 26-28 stellt keine reine 1. Wiedergabe der Tatsachen dar (siehe PCT-Richtlinie Kapitel II 4.4)).
- Die ursprüngliche Aufgabe der Erfindung sollte unverändert erhalten bleiben. 2.

PRÜFUNGSBERICHT - BEIBLATT

Tatsächlich wird in dieser Aufgabe ein "optimaler Ablauf der Kalibrierung" erwähnt, was auch eine Verkürzung der Kalibrierungszeit bedeuten kann.

In der Beschreibung auf Seite 7, Zeile18 ist nicht eindeutig dargestellt, daß das 3. genannte Dokument nicht vorveröffentlicht ist.

PUNKT VIII:

Der Anmelder hat die Merkmale "Tiefdruck", "Gravurraster", "Gravierstichel" und 1. "Probenäpfchen" in Anspruch 1 gestrichen.

Damit ist dieser Anspruch erweitert worden. Da die ursprünglichen Unterlagen für eine derartige Erweiterung keine Grundlage bieten, gehen die geänderten Anmeldeunterlagen im Widerspruch zu Artikel 34(2)b) PCT über die ursprüngliche Offenbarung hinaus.

Der Satz "als vorteilhafte Weiterbildung" in der Beschreibung auf Seite 14, Zeile 2. 16 ist nicht klar.

Tatsächlich sind die Merkmale, die zu einer schnelleren Kalibrierung führen, schon Bestandteil des unabhängigen Anspruchs 1 und können somit nicht als vorteilhafte Weiterbildung der Erfindung betrachtet werden.

To:

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

United States Patent and Trademark Office (Box PCT) Crystal Plaza 2 Washington, DC 20231

ÉTATS-UNIS D'AMÉRIQUE

Date of mailing (day/month/year)
23 July 1999 (23.07.99)

International application No.
PCT/DE99/00052

International filing date (day/month/year)
15 January 1999 (15.01.99)

Applicant
WEIDLICH, Ernst-Rudolf, Gottfried

1.	The designated Office is hereby notified of its election made:
	X in the demand filed with the International Preliminary Examining Authority on:
	06 July 1999 (06.07.99)
	in a notice effecting later election filed with the International Bureau on:
2.	The election X was
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

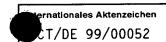
Escrimile No + /41-22) 740 14 35

Authorized officer

Diana Nissen

Telephone No.: (41-22) 338.83.38

PCT


INTERNATIONALER RECHERCHENBERICHT

(Artikel 18 sowie Regeln 43 und 44 PCT)

Aktenzeichen des Anmelders oder Anwalts	WEITERES siehe Mitteilung über die Übermittlung des internationalen Recherchenberichts (Formblatt PCT/ISA/220) sowie, soweit					
98/1005 PCT	VORGEHEN zutreffend, nachstehender Punkt 5		nder Punkt 5			
Internationales Aktenzeichen	Internationales Anmelde	edatum	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr)			
PCT/DE 99/00052	(Tag/Monat/Jahr) 15/01/19	199	16/01/1998			
Anmelder						
HEIDELBERGER DRUCKMASCHINEN	I AG et al.					
Dieser internationale Recherchenbericht wurd Artikel 18 übermittelt. Eine Kopie wird dem Inte	le von der Internationalen ernationalen Büro übermi	Recherchenbehörde e ittelt.	erstellt und wird dem Anmelder gemäß			
Diagos internetional - Bartonia	St incoorant ?	Blätter.				
Dieser internationale Recherchenbericht umfa X Darüber hinaus liegt ihm jew	veils eine Kopie der in die		n Unterlagen zum Stand der Technik bei.			
Grundlage des Berichts						
A. Hinsichtlich der Sprache ist die inter durchgeführt worden, in der sie eing	rnationale Recherche auf ereicht wurde, sofern unt	der Grundlage der inte er diesem Punkt nichts	ernationalen Anmeldung in der Sprache anderes angegeben ist.			
Anmeldung (Regel 23.1 b))	durchgeführt worden.		ngereichten Übersetzung der internationalen			
b. Hinsichtlich der in der internationaler Recherche auf der Grundlage des S	n Anmeldung offenbarten	n Nucleotid- und/oder . eführt worden ides	Aminosäuresequenz ist die internationale			
Recherche auf der Grundlage des S in der internationalen Anmel	Idung in Schriflicher Form	enthalten ist.				
zusammen mit der internatio	onalen Anmeldung in com	nputerlesbarer Form ein	ngereicht worden ist.			
bei der Behörde nachträglich	h in schriftlicher Form ein	ngereicht worden ist.				
bei der Behörde nachträglich						
internationalen Anmeldung i	im Anmeldezeitpunkt hina	ausgeht, wurde vorgele				
Die Erklärung, daß die in co wurde vorgelegt.	omputerlesbarer Form erfa	aßten Informationen de	m schriftlichen Sequenzprotokoll entsprechen,			
2. Bestimmte Ansprüche hat	ben sich als nicht reche	rchierbar erwiesen (si	iehe Feld I).			
3. Mangelnde Einheitlichkeit						
Hinsichtlich der Bezeichnung der Erfin	dung					
X wird der vom Anmelder eing		migt.				
wurde der Wortlaut von der	Behörde wie folgt festge:	setzt:				
5. Hinsichtlich der Zusammenfassung						
wurde der Wortlaut nach Re Anmelder kann der Behörde	wird der vom Anmelder eingereichte Wortlaut genehmigt. wurde der Wortlaut nach Regel 38.2b) in der in Feld III angegebenen Fassung von der Behörde festgesetzt. Der Anmelder kann der Behörde innerhalb eines Monats nach dem Datum der Absendung dieses internationalen Recherchenberichts eine Stellungnahme vorlegen.					
6. Folgende Abbildung der Zeichnungen i	ist mit der Zusammenfas:	sung zu veröffentlichen				
wie vom Anmelder vorgesch	hlagen		keine der Abb.			
weil der Anmelder selbst ke						
weil diese Abbildung die Er	weil diese Abbildung die Erfindung besser kennzeichnet.					

INTERNATIONALER RECHERCHENBERICHT

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES A. KLASS IPK 6 B41C1/045 H04N1/407

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

B41C HO4N IPK 6

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WE	SENTLICH A	NGESEH	ENE UNTE	RLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 595 324 A (DAINIPPON SCREEN MFG. CO.) 4. Mai 1994	1-4, 11-13
Υ	siehe Seite 5, Zeile 32 - Seite 10, Zeile 17	5 .
Y	US 3 893 166 A (P. C. PUGSLEY) 1. Juli 1975 siehe Spalte 4, Zeile 58 - Spalte 6, Zeile 19	5
Α	US 5 438 422 A (P. L. HOLOWKO ET AL.) 1. August 1995 siehe Spalte 8, Zeile 1 - Zeile 19 siehe Spalte 11, Zeile 46 - Spalte 12, Zeile 8	12

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
---	---

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden "y soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung veronenmanung von besonderer bedeutung; die beanspruchte Erfindu kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

De Roeck, A

dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 07/06/1999 27. Mai 1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

INTERNATIONALER RECHERCHENBERICHT

T/DE 99/00052

	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Town Assessed to
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 96 26837 A (OHIO ELECTRONIC ENGRAVERS) 6. September 1996	
A	DE 197 17 990 A (OHIO ELECTRONIC ENGRAVERS) 13. November 1997	
-		
	•	
ļ		
	-	
	• .	
		,

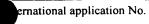
INTERNATIONAL SEARCH REPORT

ation on patent family members

ernational Application No CT/DE 99/00052

	document earch report		Publication date		Patent family member(s)		Publication date
EP 595	324	Α	04-05-1994	JP	2818525	B	30-10-1998
	, , ,		J. 00 100.	ĴΡ	6191001		12-07-1994
				DE	69307097		13-02-1997
				DE	69307097		17-04-1997
				US	5828464		27-10-1998
US 389	93166	 А	01-07-1975	GB	1369702	Α	09-10-1974
				DE	2300514	Α	19-07-1973
US 543	38422	Α	01-08-1995	US	5424845		13-06-1995
				BR	9405739		19-12-1995
				CH	688472		15-10-1997
				CH	688471		15-10-1997
				CN	1118208		06-03-1996
				DE	4491078		09-05-1996
				JP	8507722		20-08-1996
				WO	9419900		01-09-1994
				US	5440398		08-08-1995
				US	5825503	Α	20-10-1998
				US	5617217		01-04-1997
				US	5737090		07-04-1998
				US	5663803	Α	02-09-1997
				US	5737091		07-04-1998
				US	5691818		25-11-1997
				US	5831746		03-11-1998
				US	5867280		02-02-1999
				US	5886792		23-03-1999
				US	5894354		13-04-1999
				US	5663802	Α	02-09-1997
				US	5671063		23-09-1997
				US	5621533		15-04-1997
				US	5808748		15-09-1998
				US	5808749	Α	15-09-1998
WO 96	- 26837	 A	06-09-1996	US	5825503		20-10-1998
				CN	1176622		18-03-1998
				EP	0812265		17-12-1997
				JP	11500969 -	T 	26-01-1999
DE 10	717990	Α	13-11-1997	US JP	5831746 10058633		03-11-1998 03-03-1998
DE 19							

Translation



INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference 98/1005 PCT	FOR FURTHER ACT	ION See Notific	cation of Transmittal of International Examination Report (Form PCT/IPEA/416)			
International application No.	International filing date (day/month/year)	Priority date (day/month/year)			
PCT/DE99/00052	15 January 1999	(15.01.99)	16 January 1998 (16.01.98)			
International Patent Classification (IPC) or n B41C 1/045	ational classification and I	PC				
Applicant HEII	DELBERGER DRUC	KMASCHINEN	N AG			
Authority and is transmitted to the a	pplicant according to Artic	cle 36.	International Preliminary Examining			
This REPORT consists of a total of This report is also accompa been amended and are the been amended.	nied by ANNEXES, i.e., s	heets of the descript	tion, claims and/or drawings which have			
(see Rule 70.16 and Section	1 607 of the Administrative	Instructions under	ectifications made before this Authority the PCT).			
These annexes consist of a	total of 19 sho	eets.				
3. This report contains indications relating to the following items:						
I Basis of the repor	Basis of the report					
II Priority	II Priority					
III Non-establishmer	nt of opinion with regard to	novelty, inventive	step and industrial applicability			
IV Lack of unity of i						
v Reasoned stateme citations and expl	ent under Article 35(2) with anations supporting such s	n regard to novelty, tatement	inventive step or industrial applicability;			
VI Certain document	s cited					
VII Certain defects in	VII Certain defects in the international application					
VIII Certain observations on the international application						
Date of submission of the demand		Date of completion	of this report			
06 July 1999 (06.07	7.99)	09	May 2000 (09.05.2000)			
Name and mailing address of the IPEA/EP		Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

PCT/DE99/00052

I. Basis of th	I. Basis of the report			
1. This repor	t has been drawn of	on the basis of (Replacement sheets in this report as "originally filed"	which have been furnished to and are not annexed to the r	the receiving Office in response to an invitation eport since they do not contain amendments.):
	the international	application as originally filed.		
\boxtimes	the description,	pages	, as originally filed,	
		pages	, filed with the demand,	
•		pages 1-15	, filed with the letter of	
		pages	, filed with the letter of	·
\boxtimes	the claims,	Nos.		
		Nos.		le 19,
	-	Nos.		
		Nos. 1-9	, filed with the letter of	26 January 2000 (26.01.2000) ,
		Nos.	, filed with the letter of	
\boxtimes	the drawings,	sheets/fig1/1	, as originally filed,	
		sheets/fig	, filed with the demand,	
		sheets/fig	, filed with the letter of	,
		sheets/fig	, filed with the letter of	
2. The amen	dments have result	ed in the cancellation of:		
	1	pages		
		Nos. <u>10-16</u>		
	•	sheets/fig		
	, .	•		
3. Thi	s report has been e so beyond the discl	stablished as if (some of) the am osure as filed, as indicated in the	endments had not been ma Supplemental Box (Rule ?	de, since they have been considered 70.2(c)).
4. Additiona	l observations, if n	ecessary:		

INTERNATIONAL PRIMINARY EXAMINATION REPORT

International	application No.
T/DE	99/00052

V.	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
	citations and explanations supporting such statement

Statement			
Novelty (N)	Claims	1-9	YES
	Claims		NO
Inventive step (IS)	Claims	1-9	YES
•	Claims		NO NO
Industrial applicability (IA)	Claims	1-9	YES
	Claims		NO

2. Citations and explanations

Prior art:

EP-A-0595324, mentioned in the application, describes a method for calibrating an engraving amplifier in an electronic engraving machine and contains all the features of the preamble of Claim 1.

Problem:

The object of the invention is to improve a process for calibration of an engraving amplifier in an electronic engraving machine such that without knowledge of the individual transmission functions and boundary conditions a sequence of calibration to a large extent automatic and optimal is ensured (faster calibration; smaller number of individual sequences).

Solution:

The prior art does not disclose or suggest the combination of the features of the characterising part of Claim 1, namely, that to reduce the calibration time (i) at each sequence d) to g) the actual dimensions of the cup shapes are compared

INTERNATIONAL PREMINARY EXAMINATION REPORT

with the theoretical dimensions, (j) if the actual dimensions are outside the tolerance range, the transmission functions are newly calculated, (k) the differential values are determined taking into consideration the newly calculated transmission functions and (l) the signal values are corrected with the new differential values.

However, although Claim 1 appears to satisfy the requirements of PCT Article 33 with respect to the prior art, this claim needs to be amended to eliminate the objection in Box VIII, point 1.

VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

- The sentence in the description on page 2, lines
 26-28 is not a pure reproduction of the facts (see
 PCT Guidelines Chapter II 4.4).
- The original problem of the invention should not be altered.

In fact, in this problem an "optimal sequence of calibration" is mentioned; this can also mean a reduction in calibration time.

3. The description on page 7, line 18 does not show clearly that the document mentioned is not a prior publication.

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

The applicants have deleted the features "rotogravure", "engraving grid", "engraving tool" and "test cup shapes" in Claim 1.

This claim has therefore been extended. Since the original documents do not support such an extension, the amended application documents go beyond the original disclosure, contrary to PCT Article 34(2)(b).

2. The sentence "as an advantageous development" in the description on page 14, line 16 is not clear.

In fact, the features which result in faster calibration are already part of independent Claim 1 and cannot therefore be considered to be an advantageous development of the invention.

Verfahren zur Kalibrierung eines Gravierverstärkers

Die Erfindung bezieht sich auf das Gebiet der elektronischen Reproduktionstechnik und betrifft ein Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck.

5

10

15

20

25

30

In einer elektronischen Graviermaschine bewegt sich ein Gravierorgan mit einem Gravierstichel als Schneidwerkzeug in axialer Richtung an einem rotierenden Druckzylinder entlang. Der von einem Graviersignal gesteuerte Gravierstichel schneidet eine Folge von in einem Gravurraster angeordneten Näpfchen in die Mantelfläche des Druckzylinders. Das Graviersignal wird in einem Gravierverstärker durch Überlagerung von Bildsignalwerten mit einem periodischen Vibrationssignal gebildet. Während das Vibrationssignal eine oszillierende Hubbewegung des Gravierstichels zur Erzeugung des Gravurrasters bewirkt, bestimmen die Bildsignalwerte, welche die zu reproduzierenden Tonwerte zwischen "Licht" und "Tiefe" repräsentieren, die geometrischen Abmessungen der gravierten Näpfchen.

Damit die auf dem Druckzylinder gravierten Näpfchen die durch die Bildsignalwerte vorgegebenen Solltonwerte haben, wird eine Kalibrierung des Gravierverstärkers vorgenommen. Dazu werden bei einer Probegravur Probenäpfchen für vorgegebene Solltonwerte graviert, beispielsweise für die Solltonwerte "Licht", "Tiefe" und "Mittelton". Nach der Probegravur werden die geometrischen Istabmessungen der gravierten Probenäpfchen ausgemessen und mit den entsprechenden Sollabmessungen verglichen. Aus dem Vergleich der geometrischen Abmessungen werden Einstellwerte ermittelt, mit denen das Graviersignal derart kalibriert wird, daß die geometrischen Abmessungen der bei der Gravur tatsächlich erzeugten Näpfchen den für eine tonwertrichtige Gravur erforderlichen geometrischen Abmessungen entsprechen.

Bei der herkömmlichen Kalibrierung erfolgen die Vorgabe von Einstellwerten, das Ausmessen der geometrischen Abmessungen der bei Probegravuren gravierten Probenäpfchen und die Ermittlung neuer Einstellwerte anhand der Meßergebnisse im wesentlichen manuell, wobei die Einstellungen und nachfolgende Probegravuren solange fortgesetzt werden, bis eine optimale Kalibrierung erreicht ist.

-2-Die herkömmliche Vorgehensweise hat den Nachteil daß der Operator praktische

Erfahrungen über die Zusammenhänge zwischen den elektrischen Einstellgrößen und den zu erwartenden geometrischen Istabmessungen der Probenäpfchen haben muß, wobei zahlreiche Parameter und Randbedingungen zu beachten sind, wie das Übertragungsverhalten des Gravierverstärkers und des Gravierorgans, der Schneidwinkel und der Abnutzungsgrad des Gravierstichels sowie die Materialhärte der zu gravierenden Mantelfläche des Druckzylinders. Ein weiterer Nachteil besteht darin, daß bei der herkömmlichen Vorgehensweise die einzelnen Übertragungsfunktionen vorab anhand zahlreicher Probegravuren erfaßt werden müssen.

10

20

5

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine derart zu verbessern, daß ohne Kenntnis der einzelnen Übertragungsfunktionen und Randbedingungen ein weitestgehender automatischer und optimaler Ablauf der Kalibrierung gewährleistet ist.

15

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.

Vorteilhafte Weiterbildungen und Ausgestaltungen sind in den Unteransprüchen angegeben.

Die Erfindung wird nachfolgend anhand der Figur erläutert, die ein prinzipielles Ausführungsbeispiel für eine elektronische Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck zeigt. Die Graviermaschine ist beispielsweise ein HelioKlischograph® der Firma Hell Gravure Systems GmbH, Kiel, DE.

25

Ein Druckzylinder (1) wird von einem Zylinderantrieb (2) rotatorisch angetrieben. Die Gravur auf dem Druckzylinder (1) erfolgt mittels eines Gravierorgans (3), das eine Gravierstichel (4) als Schneidwerkzeug aufweist.

30

Das Gravierorgan (3) befindet sich auf einem Gravierwagen (5), der mittels einer Spindel (6) von einem Gravierwagenantrieb (7) in Achsrichtung des Druckzylinders (1) bewegt wird.

Der Gravierstichel (4) des Gravierorgans (3) schneidet gravierlinienweise eine Folge von in einem Gravurraster angeordneten Näpfchen in die Mantelfläche des rotierenden Druckzylinders (1), während sich der Gravierwagen (5) mit dem Gravierorgan (3) in Vorschubrichtung axial an dem Druckzylinder (1) entlang bewegt.

5

10

Der Gravierstichel (4) des Gravierorgans (3) wird durch ein Graviersignal G gesteuert. Das Graviersignal G wird in einem Gravierverstärker (8) durch Überlagerung eines periodischen Vibrationssignals R mit Bildsignalwerten B gebildet, welche die Tonwerte der zu gravierenden Näpfchen zwischen "Licht" (Weiß) und "Tiefe" (Schwarz) repräsentieren. Während das periodische Vibrationssignal R eine oszillierende Hubbewegung des Gravierstichels (4) zur Erzeugung des Gravurrasters bewirkt, bestimmen die Bildsignalwerte B in Verbindung mit der Amplitude des Vibrationssignals R die geometrischen Abmessungen der gravierten Näpfchen wie Querdiagonale, Längsdiagonale, Stegbreite und Durchstich.

15

20

25

wonnen, die in einem Gravurdatenspeicher (10) abgelegt sind und aus diesem Gravierlinie für Gravierlinie ausgelesen und dem D/A-Wandler (9) zugeführt werden. Jedem Gravierort für ein Näpfchen ist im Gravurraster ein Gravurdatum zugeordnet, welches als Gravierinformation den zu gravierenden Tonwert zwischen den Tonwerten "Licht" und "Tiefe" enthält.

Dem Druckzylinder (1) ist ein XY-Koordinatensystem zugeordnet, dessen X-Achse in Achsrichtung und dessen Y-Achse in Umfangsrichtung des Druckzylinders (1) orientiert sind. Die x-Ortskoordinaten der im Gravurraster angeordneten Gravierorte auf dem Druckzylinder (1) werden von dem Gravierwagenantrieb (7) erzeugt. Ein mit dem Zylinderantrieb (2) mechanisch gekoppelter Positionsgeber (11)

erzeugt die entsprechende y-Ortskoordinaten der Gravierorte auf dem Druckzylinders (1). Die Ortskoordinaten (x, y) der Gravierorte werden über Leitungen (12, 13)

Die Bildsignalwerte B werden in einem D/A-Wandler (9) aus Gravurdaten GD ge-

30

einem Steuerwerk (14) zugeführt.

Das Steuerwerk (14) steuert die Adressierung und das Auslesen der Gravurdaten GD aus dem Gravurdatenspeicher (10) in Abhängigkeit von den xy-Ortskoordinaten der aktuellen Gravierorte über eine Leitung (15). Das Steuerwerk (14) erzeugt

- 4 -

außerdem das Vibrationssignal R auf einer Leitung (16) mit der für die Erzeugung des Gravurrasters erforderlichen Frequenz.

Zur Gravur von Probenäpfchen bei einer Probegravur, die vor der eigentlichen Gravur des Druckzylinders (1) stattfindet, weist die Graviermaschine einen Probegravurrechner (19) auf, der die erforderlichen Gravurdaten GD*, welche die geometrischen Sollabmessungen der zu gravierenden Probenäpfchen darstellen, als digital/analog gewandelte Bildsignalwerte B an den Gravierverstärker (8) liefert.

Zur Aufnahme eines Videobildes der bei der Probegravur erzeugten Probenäpfchen ist ein in Achsrichtung des Druckzylinders (1) verschiebbarer Meßwagen (20) mit einer Videokamera (21) vorgesehen, die über eine Leitung (22) mit einer Bildauswertestufe (23) zum Ausmessen der geometrischen Istabmessungen der Probenäpfchen im Videobild verbunden ist. Der Meßwagen (20) kann automatisch über eine Spindel (24) von einem Meßwagenantrieb (25) auf die erforderlichen axialen Meßpositionen bewegt werden. Der Meßwagenantrieb (25) wird durch einen Steuerbefehl auf einer Leitung (26) von dem Steuerwerk (14) aus gesteuert. Alternativ kann die Videokamera (21) auch im Bereich des Gravierorgans (3) angeordnet werden.

20

25

30

5

10

15

Die in der Bildauswertestufe (23) ermittelten geometrischen Istabmessungen der gravierten Probenäpfchen werden als Meßwerte M über eine Leitung (27) an den Probegravurrechner (19) übertragen. In dem Probegravurrechner (19) werden durch Vergleich der geometrischen Istabmessungen mit den vorgegebenen geometrischen Sollabmessungen elektrische Einstellwerte E für die Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" gewonnen, die dem Gravierverstärker (8) über eine Leitung (28) zugeführt werden. Mit Hilfe der elektrischen Einstellwerte E werden das Vibrationssignal R und das Graviersignal G in dem Gravierverstärker (8) derart kalibriert, daß die bei der späteren Gravur des Druckzylinders (1) tatsächlich erzeugten Näpfchen die für eine tonwertrichtige Gravur erforderlichen geometrischen Sollabmessungen aufweisen. Die Kalibrierung kann manuell, vorzugsweise aber automatisch durch eine dynamische Regelung erfolgen, die vor oder während der eigentlichen Druckformherstellung stattfinden kann.

Die erfindungsgemäße Kalibrierung bezüglich der Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" besteht aus aufeinanderfolgenden Zyklen oder Abläufen, wobei ein Ablauf aus folgenden Schritten [A] bis [F] besteht:

- 5 [A] Eingabe der elektrischen Einstellwerte E_n für die einzelnen Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" eines Ablaufs (n),
 - [B] Durchführung einer Probegravur mit den eingegebenen Einstellwerten En,
 - [C] Ausmessen der geometrischen Istabmessungen der gravierten Probenäpfchen,
- [D] Vergleich der geometrischen Istabmessungen mit den vorgegebenen Sollabmessungen,
 - [E] Bereitstellung von Übertragungskoeffizienten, welche die Zusammenhänge zwischen den Änderungen der elektrischen Signalwerte und den daraus resultierenden Änderungen der geometrischen Abmessungen der gravierten Näpfchen wiedergeben, und
 - [F] Ermittlung von Differenzwerten ΔE aus den geometrischen Istabmessungen und den Sollabmessungen der gravierten Probenäpfchen und den Übertragungskoeffizienten sowie Berechnung von neuen Einstellwerten aus den Differenzwerten ΔE gemäß Gleichung $E_{n+1} = E_n + \Delta E$ für den nachfolgenden Ablauf (n+1).

Die einzelnen Schritte [A] bis [F] eines Ablaufs werden nachfolgend näher erläutert.

25 Schritt [A]

15

20

30

In dem Schritt [A] werden die elektrischen Einstellwerte E_R , E_L , E_T und E_M für die einzelnen Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" in den Gravierverstärker (8) eingegeben, wobei die Einstellwerte E_R die Amplitude des Vibrationssignals R, die Einstellwerte E_L und E_T die Graviersignalwerte G_L und G_T für "Licht" und "Tiefe" sowie die Einstellwerte E_M den Graviersignalwert G_M für die Korrektur eines Mitteltons steuern.

In dem Ablauf I sind die Einstellungswerte E_I im allgemeinen Erfahrungswerte, in den folgenden Abläufen (n+1) die jeweils im Schritt [E] des vorangegangenen Ablaufs (n) berechneten Einstellwerte E_{n+1} .

5 Schritt [B]

Im Schritt [B] wird eine Probegravur mit den im Schritt [A] eingegebenen Einstellwerten E_{Rn} , E_{Ln} , E_{Tn} und E_{Mn} durchgeführt. Zur Erzeugung der Probenäpfchen ruft der Probegravurrechner (19) beispielsweise die Gravurdaten GD* für die Sollwerte "Tiefe", "Licht" und für mindestens einen zwischen den Tonwerten "Licht" und "Tiefe" liegenden "Mittelton" auf. Die Gravurdaten GD* repräsentieren die vorgegebenen geometrischen Sollabmessungen der Probenäpfchen, beispielsweise die Soll-Querdiagonalen d_{QL} , d_{QT} und d_{QM} sowie bei Probenäpfchen mit Durchstich die Breite d_{K} des Durchstichs oder Kanals. Die aufgerufenen Gravurdaten GD* werden in das Graviersignal G für das Gravierorgan (3) umgesetzt. Das Gravierorgan (3) graviert auf nebeneinander liegenden Gravierlinien (29) mindestens ein Probenäpfchen (30) für "Licht" (L), "Tiefe" (T) und "Mittelton" (M). Vorzugsweise werden auf jeder Gravierlinie (29) mehrere gleiche Probenäpfchen (30) graviert, beispielsweise über einen wählbaren Gravierlinienbereich.

20

25

30

15

10

Schritt [C]

In dem Schritt [C] nimmt die Videokamera (21) ein Videobild der gravierten Probenäpfchen (30) auf, um in der Bildauswertestufe (23) anhand des Videobildes die geometrischen Istabmessungen, nämlich die Querdiagonalen d"QL, d"QT, d"QM und die Breite d"K des Durchstichs der gravierten Probenäpfchen (30) für "Licht", "Tiefe" und "Mittelton" auszumessen und als Meßwerte M an den Probegravurrechner (19) weiterzuleiten. Ein Verfahren zur automatischen Auswertung eines Videobildes zwecks Ermittlung der geometrischen Abmessungen von Probenäpfchen ist beispielsweise ausführlich in der PCT-Patentanmeldung No. PCT/DE 98/01441 erläutert.

Schritt [D]

In dem Schritt [D] werden die geometrischen Istabmessungen d''QL, d''QT, d''QM und d'_K und die entsprechenden geometrischen Sollabmessungen d'QL, d'QT, d'QM und d'_K miteinander verglichen und anhand des Vergleichs entschieden, ob ein weiterer Ablauf zur Optimierung der Kalibrierung folgen muß oder die Kalibrierung bereits beendet werden kann. Die Kalibrierung wird beispielsweise dann abgeschlossen, wenn entweder die gemessenen Istabmessungen mit den Sollabmessungen übereinstimmen oder wenn die erreichten Istabmessungen innerhalb eines vorgegebenen Toleranzbereichs um die vorgegebenen Sollabmessungen liegen. Anstelle der Querdiagonalen d''QL, d''QT und d''QM der Näpfchen können auch deren Längsdiagonalen untersucht werden.

Schritt [E]

15

20

25

30

10

Im Schritt [E] werden Übertragungskoeffizienten "f" bereitgestellt, welche die funktionellen Zusammenhänge zwischen den Änderungen der elektrischen Signalwerte ΔR , ΔG_L , ΔG_T und ΔG_M und den daraus resultierenden Änderungen der geometrischen Abmessungen Δd_{QL} , Δd_{QT} , Δd_{QM} und Δd_K der gravierten Näpfchen berücksichtigen. Diese funktionsmäßigen Zusammenhänge werden nachfolgend erläutert.

Eine Änderung des Vibrationssignals ΔR zur Kalibrierung des Parameters "Vibration" beeinflußt die Querdiagonale d $_{QT}$ und den Durchstich d $_{K}$ eines den Tonwert "Tiefe" repräsentierenden Näpfchens nach folgender Beziehung (I):

$$\Delta(d_{QT} - d_K) = f(R) \times \Delta R$$
 (I)

Zusätzlich nimmt eine Änderung des Vibrationssignals ΔR Einfluß auf die Querdiagonalen d_{QL} , d_{QT} und d_{QM} der die Tonwerte "Licht", "Tiefe" und "Mittelton" repräsentierenden Näpfchen nach folgenden Beziehungen (II), (III) und (IV):

$$\Delta d_{QL}(R) = f_L(R) \times \Delta R$$
 (II)

$$\Delta d_{QT}(R) = f_T(R) \times \Delta R$$
 (III)

$$\Delta d_{QM}(R) = f_M(R) \times \Delta R$$
 (IV)

Eine Änderung des Graviersignalwertes ΔG_L zur Kalibrierung des Parameters "Licht" beeinflußt die Querdiagonale d_{QL} eines den Tonwert "Licht" repräsentierenden Näpfchens nach folgender Beziehung (V):

10
$$\Delta d_{QL} = 1/f(G_L) \times \Delta G_L$$
 (V)

5

15

20

25

Zusätzlich nimmt eine Änderung des Graviersignalwertes ΔG_L Einfluß auf die Querdiagonale d_{QM} eines den Tonwert "Mittelton" repräsentierenden Näpfchens nach folgender Beziehung (VI):

$$\Delta d_{OM}(G_L) = f_M(G_L) \times \Delta G_L$$
 (VI)

Eine Änderung des Graviersignalwertes ΔG_T zur Kalibrierung des Parameters "Tiefe" beeinflußt die Querdiagonale d_{QT} eines den Tonwert "Tiefe" repräsentierenden Näpfchens nach folgender Beziehung (VII):

$$\Delta d_{QT} = 1/f(G_T) \times \Delta G_T$$
 (VII)

Zusätzlich nimmt eine Änderung des Graviersignalwertes ∆G_T Einfluß auf die Querdiagonale d_{QM} eines den Tonwert "Mittelton" repräsentierenden Näpfchens nach folgender Beziehung (VIII):

$$\Delta d_{QM}(G_T) = f_M(G_T) \times \Delta G_T$$
 (VIII)

Durch eine Korrektur des Mitteltons wird die mechanische Abnutzung des Gravierstichels eines Gravierorgans, die sich insbesondere durch ein verkleinertes Näpf-

- 9 -

chenvolumen bei einen Mittelton repräsentierenden Näpfchen bemerkbar macht, korrigiert. Eine Änderung des Graviersignalwertes ΔG_M zur Mitteltonkorrektur beeinflußt die Querdiagonale d_{QM} eines den Mittelton repräsentierenden Näpfchens nach folgender Beziehung (IV):

5

10

$$\Delta d_{QM} = 1/f(G_M) \times \Delta G_M$$
 (IX)

Unter der im beschriebenen Ausführungsbeispiel gemachten Annahme, daß die Zusammenhänge näherungsweise linear sind, ist "f" jeweils ein Übertragungskoeffizient. Für den Fall, daß die funktionalen Zusammenhänge jedoch nicht linear sein sollten, kann "f" jeweils auch eine Übertragungsfunktion sein. Die angegebenen Zusammenhänge sind direkt von der Art der Signalbearbeitung abhängig. Durch eine andere Signalbearbeitung kann sich der Umfang der funktionalen Zusammenhänge ändern.

15

20

Die verschiedenen Übertragungskoeffizienten f in den Beziehungen (I) bis (IX), welche die Gesamtübertragungsfunktion der Graviermaschine zwischen den eingangsseitigen elektrischen Einstellwerten und den ausgangsseitigen geometrischen Abmessungen der gravierten Näpfchen wiedergeben, werden in zweckmäßiger Weise vor der Kalibrierung anhand von Probegravuren ermittelt und zur späteren Verwendung in dem Probegravurrechner (19) gespeichert.

Schritt [F]

25

In dem Schritt [E] werden jeweils für den nachfolgenden Ablauf (n+1) ein neuer Vibrationssignalwert R_{n+1} sowie neue Graviersignalwerte G_{Ln+1} , G_{Tn+1} und G_{Mn+1} für die einzelnen Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" berechnet.

Parameter "Vibration"

30

Zunächst wird unter Berücksichtigung der Beziehung (I) aus den gemessenen Istabmessungen d $^{"}_{QT}$ und d $^{"}_{K}$, den Sollabmessungen d $^{'}_{QT}$ und d $^{'}_{K}$ und dem zuvor

ermittelten Übertragungskoeffizienten f(R) ein Differenzwert ΔR für das Vibrationssignals R nach Gleichung (X) berechnet.

$$\Delta R = 1/f(R) [(d'_{QT} - d'_{K}) - (d''_{QT} - d''_{K})]$$
 (X)

Dann wird der Vibrationssignalwert R_{n+1} für den neuen Ablauf (n+1) aus dem nach Gleichung (X) ermittelten Differenzwert ΔR und dem Vibrationssignalwert R_n des vorangegangenen Ablaufs (n) nach Gleichung (XI) ermittelt.

$$R_{n+1} = R_n + \Delta R$$
 (XI)

Dieser Vibrationssignalwert R_{n+1} wird durch einen entsprechenden Einstellwert E_R in den Gravierverstärker (8) für einen neuen Ablauf (n+1) eingegeben.

15 Parameter "Licht"

5

20

25

Zunächst wird eine fiktive Querdiagonale d^*_{QL} als Summe aus der gemessenen Querdiagonalen d''_{QL} und einer Querdiagonalenänderung $\Delta d_{QL}(R)$, die sich aufgrund der Änderung ΔR des Vibrationssignals gemäß der Beziehung (II) ergeben hat, nach Gleichung (XII) berechnet.

$$d^*_{OL} = d''_{OL} + \Delta d_{OL}(R) \quad (XII)$$

Mit Hilfe der fiktiven Querdiagonalen d*_{QL} wird festgestellt, wie sich der Graviersignalwert ΔG_L ändern muß, damit die Soll-Querdiagonale d'_{QL} erreicht wird.

Dazu wird zunächst die Abweichung Δd_{QL} der fiktiven Querdiagonalen d* $_{QL}$ von der Soll-Querdiagonalen d' $_{QL}$ nach Gleichung (XIII) ermittelt.

30
$$\Delta d_{OL} = d^*_{OL} - d^*_{OL} \qquad (XIII)$$

Aus dem Zusammenhang (V) wird dann die zur Korrektur der Abweichung Δd_{QL} erforderliche Änderung des Graviersignalwertes ΔG_L unter Berücksichtigung des zuvor ermittelten Übertragungskoeffizienten $f(G_L)$ nach Gleichung (XIV) berechnet.

$$\Delta G_L = f(G_L) \times \Delta d_{QL}$$
 (XIV)

Damit ergibt sich der neue Graviersignalwert G_{Ln+1} für den Ablauf (n+1) gemäß Gleichung (XV).

$$G_{Ln+1} = G_{Ln} + \Delta G_L (XV)$$

Dieser Graviersignalwert G_{Ln+1} wird durch einen entsprechenden Einstellwert E_L in den Gravierverstärker (8) für einen neuen Ablauf (n+1) eingegeben.

15 Parameter "Tiefe"

20

25

Zunächst wird eine fiktive Querdiagonale d^*_{QT} als Summe aus der gemessenen Querdiagonalen d''_{QT} und einer Querdiagonalenänderung $\Delta d_{QT}(R)$, die sich aufgrund der Änderung ΔR des Vibrationssignals gemäß der Beziehung (III) ergeben hat, nach Gleichung (XVI) berechnet.

$$d^*_{OT} = d''_{OT} + \Delta d_{OT}(R)$$
 (XVI)

Mit Hilfe der fiktiven Querdiagonalen d *QT wird festgestellt, wie sich der Graviersignalwert ΔG_T ändern muß, damit die Soll-Querdiagonale d $^!QT$ erreicht wird.

Dazu wird zunächst die Abweichung Δd_{QT} der fiktiven Querdiagonalen d* $_{QT}$ von der Soll-Querdiagonalen d' $_{QT}$ nach Gleichung (XVII) ermittelt.

$$\Delta d_{QT} = d^*_{QT} - d'_{QT} \qquad (XVII)$$

Aus dem Zusammenhang (VII) wird dann die zur Korrektur der Abweichung Δd_{QT} erforderliche Änderung des Graviersignalwertes ΔG_T unter Berücksichtigung des zuvor ermittelten Übertragungskoeffizienten $f(G_T)$ nach Gleichung (XVIII) berechnet.

5

$$\Delta G_T = f(G_T) \times \Delta d_{QT}$$
 (XVIII)

Damit ergibt sich der neue Graviersignalwert G_{Tn+1} für den Ablauf (n+1) gemäß Gleichung (IXX).

10

$$G_{Tn+1} = G_{Tn} + \Delta G_T$$
 (IXX)

Dieser Graviersignalwert G_{Tn+1} wird durch einen entsprechenden Einstellwert E_T in den Gravierverstärker (8) für einen neuen Ablauf (n+1) eingegeben.

15

20

Parameter "Mittelton"

Zunächst wird eine fiktive Querdiagonale d^*_{QM} als Summe aus der gemessenen Querdiagonalen d''_{QM} und den Querdiagonalenänderungen $\Delta d_{QM}(R)$, $\Delta d_{QM}(G_L)$ und $\Delta d_{QM}(G_T)$ nach Gleichung (XX) berechnet. Die Querdiagonalenänderungen $\Delta d_{QM}(R)$, $\Delta d_{QM}(G_L)$ und $\Delta d_{QM}(G_T)$ ergeben sich dabei aufgrund der Änderung ΔR des Vibrationssignals R gemäß der Beziehung (IV) und der Änderungen ΔG_L und ΔG_T des Graviersignalwerte G gemäß der Beziehungen (VI) und (VIII).

$$d^{*}_{QM} = d''_{QM} + \Delta d_{QM}(R) + \Delta d_{QM}(G_L) + \Delta d_{QM}(G_T) \qquad (XX)$$

Mit Hilfe der fiktiven Querdiagonalen d^*_{QM} wird festgestellt, wie sich der Graviersignalwert ΔG_M ändern muß, damit die Soll-Querdiagonale d'_{QM} erreicht wird.

Dazu wird zunächst die Abweichung Δd_{QM} der fiktiven Querdiagonalen d*_{QM} von der Soll-Querdiagonalen d'_{QM} nach Gleichung (XXI) ermittelt.

$$\Delta d_{QM} = d^*_{QM} - d'_{QM} \qquad (XXI)$$

5

10

15

20

25

30

Aus dem Zusammenhang (IV) wird dann die zur Korrektur der Abweichung Δd_{QM} erforderliche Änderung des Graviersignalwertes ΔG_M unter Berücksichtigung des zuvor ermittelten Übertragungskoeffizienten $f(G_M)$ nach Gleichung (XXII) berechnet.

$$\Delta G_M = f(G_M) \times \Delta d_{QM}$$
 (XXII)

Damit ergibt sich der neue Graviersignalwert G_{Mn+1} für den Ablauf (n+1) gemäß Gleichung (XXIII) zu:

$$G_{Mn+1} = G_{Mn} + \Delta G_M$$
 (XXIII)

Dieser Graviersignalwert G_{Mn+1} wird durch einen entsprechenden Einstellwert E_{M} in den Gravierverstärker (8) für einen neuen Ablauf (n+1) eingegeben.

Die einzelnen Abläufe werden unter Beibehaltung der Übertragungskoeffizienten f solange wiederholt, bis festgestellt wird, daß entweder die gemessenen Istabmessungen mit den Sollabmessungen übereinstimmen oder daß die erreichten Istabmessungen innerhalb eines vorgegebenen Toleranzbereichs um die vorgegebenen Sollabmessungen liegen.

Um die Anzahl der einzelnen Abläufe zu verkleinern und damit eine schnellere Kalibrierung zu erreichen, wird als vorteilhafte Weiterbildung vorgeschlagen, im Schritt [D] mindestens innerhalb einer Ablaufs (n), vorzugsweise innerhalb des zweiten Ablaufs II, die Differenzen zwischen den Sollabmessungen d'_{QT}, d'_{QL}, d'_{QM} und d'_K fest-und den jeweils erreichten Istabmessungen d''_{QT}, d''_{QL}, d''_{QM} und d''_K fest-

zustellen und, falls die Differenzen größer als ein vorgegebener Toleranzbereich unterhalb der Sollabmessungen ist, im Sinne einer schnelleren Annäherung der Istabmessungen an die Sollabmessungen im Schritt [E] verbesserte Übertragungskoeffizienten f' zu ermitteln und dann im Schritt [F] anhand der neuen Über-5 tragungskoeffizienten f' einen korrigierten Vibrationssignalwert R_{n+1} sowie korrigierte Graviersignalwerte G_{Ln+1}, G_{Tn+1} und G_{Mn+1} für den nachfolgenden Ablauf (n+1) zu berechnen, um eine schnelle Kalibrierung zu erreichen. Die verbesserten Übertragungskoeffizienten f' können gespeichert und in vorteilhafter Weise für eine spätere Kalibrierung vor der Gravur eines neuen Druckzylinders (1) verwendet werden.

10

30

Die Ermittlung der verbesserten Übertragungskoeffizienten f', welche die Zusammenhänge zwischen den eingestellten elektrischen Einstellwerten En (Rn, GLn, G_{Tn}, G_{Mn}) und den gemessenen geometrischen Abmessungen d''_n (d''_{QL}, d''_{QT}, d"OM, d"K) wiedergeben, erfolgt durch Differenzbildung zwischen den Einstellwerte E_n und $\mathsf{E}_\mathsf{n+1}$ und durch Differenzbildung und zwischen den gemessenen geometrischen Abmessungen d_n und d_{n+1} von zwei aufeinanderfolgenden Abläufen (n) und (n+1) nach folgendem allgemeinen Schema:

Die Ermittlung eines verbesserten Übertragungskoeffizienten f' wird am Beispiel 25 des Parameters "Vibration" näher erläutert.

Ein in dem ersten Ablauf I eingegebener erster Vibrationssignalwert RI ergibt bei der ersten Messung die geometrischen Abmessungen d $_{\rm QTI}^{3}$ und d $_{\rm KI}^{3}$. Ein in dem zweiten Ablauf II eingegebener zweiter Vibrationssignalwert RII ergibt bei der

zweiten Messung die geometrischen Abmessungen d_{QTII}^{V} und d_{KII}^{V} . Nach Differenzbildung läßt sich der verbesserte Übertragungskoeffizient f' für den Parameter "Vibration" bei bekanntem ΔR und bekannten geometrischen Abmessungen gemäß Gleichung (XIV) berechnen.

$$\Delta R = (R_{II} - R_{I}) = f' [(d_{QTII} - d_{QTI}) - (d_{KII} - d_{KI})]$$
 (XIV)

5

Die Ermittlung verbesserter Übertragungskoeffizienten f' für die anderen Parameter "Licht", "Tiefe" und "Mittelton" läuft analog ab.

<u>Patentansprüche</u>

- Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck, bei dem
 - in einem Gravierverstärker (8) aus Gravurwerten (GD), welche zu gravierende Solltonwerte zwischen "Licht" und "Tiefe" darstellen, und einem periodischen Vibrationssignal (R) zur Erzeugung eines Gravurrasters ein Graviersignal (G) zur Ansteuerung des Gravierstichels (4) eines Gravierorgans (3) gewonnen wird,
 - der Gravierstichel (4) in den Druckzylinder (1) eine Folge von in dem Gravurraster angeordneten Näpfchen eingraviert, deren geometrischen Abmessungen die gravierten Isttonwerte bestimmen und
 - der Gravierverstärker (8) derart kalibriert wird, daß die gravierten Isttonwerte den zu gravierenden Solltonwerten entsprechen, <u>dadurch gekennzeichnet</u>, daß
 - a) Übertragungsfunktionen (f) ermittelt werden, welche die Zusammenhänge zwischen am Gravierverstärker (8) eingestellten Änderungen der Signalwerte (R, G_L, G_T, G_M) und den daraus resultierenden Änderungen der geometrischen Istabmessungen der gravierten Näpfchen wiedergeben,
 - b) am Gravierverstärker (8) Signalwerte (R, G_L, G_T, G_M) zur Änderung mindestens eines Parameters "Vibration", "Licht", "Tiefe" oder "Mittelton" eingestellt werden.
 - c) mit den im Gravierverstärker (8) eingestellten Signalwerten (R, G_L, G_T, G_M)

 Probenäpfchen (33) für vorgegebene Solltonwerte graviert und deren geometrische Istabmessungen ausgemessen werden,
- d) aus den gemessenen Istabmessungen und den vorgegebenen Sollabmessungen der gravierten Probenäpfchen (33) unter Berücksichtigung der ermittelten Übertragungsfunktionen (f) Differenzwerte (ΔR , ΔG_L , ΔG_T , ΔG_M) ermittelt werden,
 - d) die im Schritt b) eingestellten Signalwerte (R, G_L , G_T , G_M) durch Addition der Differenzwerte (ΔR , ΔG_L , ΔG_T , ΔG_M) korrigiert werden und

10

5

15

20

- e) die Abläufe b) bis d) jeweils mit den korrigierten Signalwerten (R, G_L, G_T, G_M) solange wiederholt werden, bis die geometrischen Istabmessungen der gravierten Probenäpfchen mindestens innerhalb eines Toleranzbereichs um die vorgegebenen Sollabmessungen liegen.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ermittlung der Übertragungsfunktionen (f) vor der Kalibrierung des Gravierverstärkers (8) erfolgt.
- 10 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß
 - die Zusammenhänge zwischen am Gravierverstärker (8) einzustellenden Signalwerten (R, G_L, G_T, G_M) und den geometrischen Istabmessungen der gravierten Näpfchen annähernd linear sind und
 - die Zusammenhänge durch Übertragungskoeffizienten (f) definiert sind.
 - Verfahren nach mindestens einem der Ansprüche 1 bis 3, <u>dadurch gekenn-</u> <u>zeichnet</u>, daß zur Änderung des Parameters "Vibration" der Vibrationssignalwert (R) eingestellt wird.
- 5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, <u>dadurch gekenn-zeichnet</u>, daß zur Änderung der Parameter "Licht", "Tiefe" oder "Mittelton" der entsprechende Graviersignalwert (G_L, G_T, G_M) eingestellt wird.
 - 6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, <u>dadurch gekennzeichnet</u>, daß zur Verkürzung der Kalibrierungszeit
 - bei jedem Ablauf die gemessenen geometrischen Istabmessungen der Probenäpfchen (33) mit den vorgegebenen geometrischen Sollabmessungen verglichen werden,
 - falls die gemessenen geometrischen Istabmessungen unterhalb eines vorgegebenen Toleranzbereiches für die geometrischen Sollabmessungen liegen, die Übertragungsfunktionen (f) neu berechnet werden und

5

30

- die Differenzwerte (ΔR , ΔG_L , ΔG_T , ΔG_M) unter Berücksichtigung der neu berechneten Übertragungsfunktionen (f') ermittelt werden.
- 7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, <u>dadurch gekennzeichnet</u>, daß die Neuberechnung der Übertragungsfunktionen (f) jeweils durch Differenzbildung zwischen den eingestellten Signalwerten und durch Differenzbildung zwischen den funktionsmäßig zugehörigen geometrischen Istabmessungen der Näpfchen von zwei aufeinander folgenden Abläufen erfolgt.

8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, <u>dadurch gekennzeichnet</u>, daß die geometrischen Abmessung eines Näpfchens die Querdiagonalen (d_Q), die Längsdiagonale (d_L) und gegebenenfalls der Durchstich (d_K) ist.

15

- 9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die für den ersten Ablauf eingestellten Signalwerte Erfahrungswerte sind.
- 20 10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, <u>dadurch gekenn-zeichnet</u>, daß die für den ersten Ablauf eingestellten Signalwerte Erfahrungswerte sind.
 - 11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, <u>dadurch gekennzeichnet</u>, daß Probenäpfchen (33) graviert werden, welche die Tonwerte "Licht", "Tiefe" und "Mittelton" repräsentieren.
 - 12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, <u>dadurch gekennzeichnet</u>, daß
- mit einer Videokamera (21) ein Videobild der gravierten Probenäpfchen (33) aufgenommen wird und

- die geometrischen Istabmessungen der gravierten Probenäpfchen (33) aus dem Videobild ermittelt werden.
- 13. Verfahren nach mindestens einem der Ansprüche 1 bis 12, <u>dadurch gekennzeichnet</u>, daß der Differenzwert (ΔR) des Vibrationssignalwertes (R) für den Parameter "Vibration" aus der Differenz zwischen den Istabmessungen (d'_{QT}, d'_K) und den Sollabmessungen (d'_{QT}, d'_K) eines den Tonwertbereich "Tiefe" repräsentierenden Näpfchens ermittelt wird.

15

20

- 14. Verfahren nach mindestens einem der Ansprüche 1 bis 13, <u>dadurch gekenn-zeichnet</u>, daß
 - eine fiktive Querdiagonale (d*_{QL}) für ein den Tonwertbereich "Licht" repräsentierendes Näpfchen als Summe aus der gemessenen Querdiagonalen (d"_{QL}) und einer Querdiagonalenänderung (Δd_{QL}(R)), die sich aufgrund der Änderung (ΔR) des Vibrationssignals (R) ergibt,
 - die Abweichung (∆d_{QL}) der fiktiven Querdiagonalen (d*_{QL}) von der Soll-Querdiagonalen (d'_{QL}) ermittelt wird und
 - der Differenzwert (ΔG_L) des Graviersignalwertes (G_L) für den Parameter
 "Licht" aus der festgestellten Abweichung (Δd_{QL}) und der Übertragungsfunktion (f(G_L)) berechnet wird, welche den Zusammenhang zwischen einer
 Änderung des Graviersignalwertes (G_L) für den Parameter "Licht" und der
 daraus resultierenden Änderung der Querdiagonalen (d_{QL}) eines den Tonwertbereich "Licht" repräsentierenden Näpfchens wiedergibt.
- 15. Verfahren nach mindestens einem der Ansprüche 1 bis 14, <u>dadurch gekenn-</u>
 <u>zeichnet</u>, daß
 - eine fiktive Querdiagonale (d*_{QT}) für ein den Tonwertbereich "Tiefe" repräsentierendes Näpfchen als Summe aus der gemessenen Querdiagonalen (d"_{QT}) und einer Querdiagonalenänderung (Δd_{QT}(R)), die sich aufgrund der Änderung (ΔR) des Vibrationssignals (R) ergibt,

- die Abweichung (Δd_{QT}) der fiktiven Querdiagonalen (d*_{QT}) von der Soll-Querdiagonalen (d'_{QT}) ermittelt wird und
- der Differenzwert (ΔG_T) des Graviersignalwertes (G_T) für den Parameter "Tiefe" aus der festgestellten Abweichung (Δd_{QT}) und der Übertragungsfunktion (f(G_T)) berechnet wird, welche den Zusammenhang zwischen einer Änderung des Graviersignalwertes (G_T) für den Parameter "Tiefe" und der daraus resultierenden Änderung der Querdiagonalen (d_{QT}) eines den Tonwertbereich "Tiefe" repräsentierenden Näpfchens wiedergibt.
- 16. Verfahren nach mindestens einem der Ansprüche 1 bis 15, <u>dadurch gekenn-zeichnet</u>, daß

15

- eine fiktive Querdiagonale (d^*_{QM}) für ein den Tonwertbereich "Mittelton" repräsentierendes Näpfchen als Summe aus der gemessenen Querdiagonalen (d^*_{QM}) und Querdiagonalenänderungen ($\Delta d_{QM}(R)$; $\Delta d_{QM}(G_L)$ $\Delta d_{QM}(G_T)$), addie sich aufgrund der Änderung (ΔR) des Vibrationssignals (R) ergeben,
- die Abweichung (∆d_{QM}) der fiktiven Querdiagonalen (d*_{QM}) von der Soll-Querdiagonalen (d'_{QM}) ermittelt wird und
- der Differenzwert (ΔG_M) des Graviersignalwertes (G_M) für den Parameter "Mittelton" aus der festgestellten Abweichung (Δd_{QM}) und der Übertragungsfunktion (f(G_M) berechnet wird, welche den Zusammenhang zwischen einer Änderung des Graviersignalwertes (G_M) für den Parameter "Mittelton" und der daraus resultierenden Änderung der Querdiagonalen (d_{QM}) eines den Tonwertbereich "Mittelton" repräsentierenden Näpfchens wiedergibt.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Kalibrierung eines Gravierverstärkers (8) einer elektronischen Graviermaschine, in dem aus Gravurwerten (GD), welche 5 Solltonwerte zwischen "Licht" und "Tiefe" darstellen, und einem Vibrationssignal (R) ein Graviersignal (G) zur Ansteuerung des Gravierstichels (4) eines Gravierorgans (3) gewonnen. Mit dem Gravierstichel (4) werden Näpfchen graviert, deren geometrischen Abmessungen die Isttonwerte bestimmen. Zunächst werden Übertragungsfunktionen ermittelt, welche die Zusammenhänge zwischen den am Gravierverstärker (8) eingestellten Signalwerten und den daraus resultierenden Änderungen der Istabmessungen der Näpfchen wiedergeben. Mit den eingestellten Signalwerten für mindestens einen der Parameter "Vibration", "Licht", "Tiefe" oder "Mittelton" werden Probenäpfchen (33) für vorgegebene Solltonwerte graviert. Aus den gemessenen Istabmessungen und den vorgegebenen Sollabmessungen der Probenäpfchen (33) werden unter Berücksichtigung der Übertragungsfunktionen Differenzwerte ermittelt, mit denen die eingestellten Signalwerte korrigiert werden. Die Abläufe werden mit den korrigierten Signalwerten wiederholt, bis die Istabmessungen der gravierten Probenäpfchen mindestens innerhalb eines Toleranzbereichs um die Sollabmessungen liegen.

20

10

(Fig. 1)

15

20

25

Verfahren zur Kalibrierung eines Gravierverstärkers

Die Erfindung bezieht sich auf das Gebiet der elektronischen Reproduktionstechnik und betrifft ein Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck.

In einer elektronischen Graviermaschine bewegt sich ein Gravierorgan mit einem Gravierstichel als Schneidwerkzeug in axialer Richtung an einem rotierenden Druckzylinder entlang. Der von einem Graviersignal gesteuerte Gravierstichel schneidet eine Folge von in einem Gravurraster angeordneten Näpfchen in die Mantelfläche des Druckzylinders. Das Graviersignal wird in einem Gravierverstärker durch Überlagerung von Bildsignalwerten mit einem periodischen Vibrationssignal gebildet. Während das Vibrationssignal eine oszillierende Hubbewegung des Gravierstichels zur Erzeugung des Gravurrasters bewirkt, bestimmen die Bildsignalwerte, welche die zu reproduzierenden Tonwerte zwischen "Licht" und "Tiefe" repräsentieren, die geometrischen Abmessungen der gravierten Näpfchen.

Damit die auf dem Druckzylinder gravierten Näpfchen die durch die Bildsignalwerte vorgegebenen Solltonwerte haben, wird eine Kalibrierung des Gravierverstärkers vorgenommen. Dazu werden bei einer Probegravur Probenäpfchen für vorgegebene Solltonwerte graviert, beispielsweise für die Solltonwerte "Licht", "Tiefe" und "Mittelton". Nach der Probegravur werden die geometrischen Istabmessungen der gravierten Probenäpfchen ausgemessen und mit den entsprechenden Sollabmessungen verglichen. Aus dem Vergleich der geometrischen Abmessungen werden Einstellwerte ermittelt, mit denen das Graviersignal derart kalibriert wird, daß die geometrischen Abmessungen der bei der Gravur tatsächlich erzeugten Näpfchen den für eine tonwertrichtige Gravur erforderlichen geometrischen Abmessungen entsprechen.

Bei der herkömmlichen Kalibrierung eines Gravierverstärkers einer Gravierma-30 schine erfolgen die Vorgabe von Einstellwerten, das Ausmessen der geometrischen Abmessungen der bei Probegravuren gravierten Probenäpfchen und die Ermittlung neuer Einstellwerte anhand der Meßergebnisse im wesentlichen manu-2-

ell, wobei die Einstellungen und nachfolgende Probegravuren solange fortgesetzt werden, bis eine optimale Kalibrierung erreicht ist. Die herkömmliche Vorgehensweise hat den Nachteil daß der Operator praktische Erfahrungen über die Zusammenhänge zwischen den elektrischen Einstellgrößen und den zu erwartenden geometrischen Istabmessungen der Probenäpfchen haben muß, wobei zahlreiche Parameter und Randbedingungen zu beachten sind, wie das Übertragungsverhalten des Gravierverstärkers und des Gravierorgans, der Schneidwinkel und der Abnutzungsgrad des Gravierstichels sowie die Materialhärte der zu gravierenden Mantelfläche des Druckzylinders.

10

15

5

Aus der EP 0 595 324 A ist bereits ein automatisches Verfahren zur Kalibrierung eines Gravierverstärkers einer Graviermaschine bekannt, bei dem Signalwerte zur Änderung mindestens eines Parameters "Vibration", "Licht", "Tiefe" oder "Mittelton am Gravierverstärker eingestellt werden, mit den eingestellten Signalwerten eine Probegravur durchgeführt wird, die Istabmessungen der gravierten Probenäpfchen ausgemessen werden und bei dem aus den ausgemessenen Istabmessungen und vorgegebenen Sollabmessungen unter Berücksichtigung von zuvor berechneten Übertragungsfunktionen Differenzwerte ermittelt werden, mit denen die Signalwerte korrigiert werden, wobei die einzelnen Schritte mit den jeweils korrigierten Signalwerten routinemäßig solange wiederholt werden, bis die Istabmessungen der gravierten Probenäpfchen innerhalb eines Toleranzbereichs liegen.

Ein ähnliches Verfahren zur Kalibrierung eines Gravierverstärkers einer Graviermaschine ist aus der US 5 438 422 A bekannt.

25

20

Die bekannten Verfahren haben den Nachteil, daß für eine optimale Kalibrierung eine relativ lange Zeit benötigt wird, da bei den Schrittwiederholungen immer eine neue Probegravur durchzuführen ist.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine derart zu verbessern, daß die für die Kalibrierung benötigte Zeit verkürzt wird.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.

Vorteilhafte Weiterbildungen und Ausgestaltungen sind in den Unteransprüchen angegeben.

5

Die Erfindung wird nachfolgend anhand der Figur erläutert, die ein prinzipielles Ausführungsbeispiel für eine elektronische Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck zeigt. Die Graviermaschine ist beispielsweise ein HelioKlischograph[®] der Firma Hell Gravure Systems GmbH, Kiel, DE.

10

Ein Druckzylinder (1) wird von einem Zylinderantrieb (2) rotatorisch angetrieben. Die Gravur auf dem Druckzylinder (1) erfolgt mittels eines Gravierorgans (3), das eine Gravierstichel (4) als Schneidwerkzeug aufweist.

15 I

Das Gravierorgan (3) befindet sich auf einem Gravierwagen (5), der mittels einer Spindel (6) von einem Gravierwagenantrieb (7) in Achsrichtung des Druckzylinders (1) bewegt wird.

20

Der Gravierstichel (4) des Gravierorgans (3) schneidet gravierlinienweise eine Folge von in einem Gravurraster angeordneten Näpfchen in die Mantelfläche des rotierenden Druckzylinders (1), während sich der Gravierwagen (5) mit dem Gravierorgan (3) in Vorschubrichtung axial an dem Druckzylinder (1) entlang bewegt.

25

30

Der Gravierstichel (4) des Gravierorgans (3) wird durch ein Graviersignal G gesteuert. Das Graviersignal G wird in einem Gravierverstärker (8) durch Überlagerung eines periodischen Vibrationssignals R mit Bildsignalwerten B gebildet, welche die Tonwerte der zu gravierenden Näpfchen zwischen "Licht" (Weiß) und "Tiefe" (Schwarz) repräsentieren. Während das periodische Vibrationssignal R eine oszillierende Hubbewegung des Gravierstichels (4) zur Erzeugung des Gravurrasters bewirkt, bestimmen die Bildsignalwerte B in Verbindung mit der Amplitude des Vibrationssignals R die geometrischen Abmessungen der gravierten Näpfchen wie Querdiagonale, Längsdiagonale, Stegbreite und Durchstich.

25

Die Bildsignalwerte B werden in einem D/A-Wandler (9) aus Gravurdaten GD gewonnen, die in einem Gravurdatenspeicher (10) abgelegt sind und aus diesem Gravierlinie für Gravierlinie ausgelesen und dem D/A-Wandler (9) zugeführt werden. Jedem Gravierort für ein Näpfchen ist im Gravurraster ein Gravurdatum zugeordnet, welches als Gravierinformation den zu gravierenden Tonwert zwischen den Tonwerten "Licht" und "Tiefe" enthält.

Dem Druckzylinder (1) ist ein XY-Koordinatensystem zugeordnet, dessen X-Achse in Achsrichtung und dessen Y-Achse in Umfangsrichtung des Druckzylinders (1) orientiert sind. Die x-Ortskoordinaten der im Gravurraster angeordneten Gravierorte auf dem Druckzylinder (1) werden von dem Gravierwagenantrieb (7) erzeugt. Ein mit dem Zylinderantrieb (2) mechanisch gekoppelter Positionsgeber (11) erzeugt die entsprechende y-Ortskoordinaten der Gravierorte auf dem Druckzylinders (1). Die Ortskoordinaten (x, y) der Gravierorte werden über Leitungen (12, 13) einem Steuerwerk (14) zugeführt.

Das Steuerwerk (14) steuert die Adressierung und das Auslesen der Gravurdaten GD aus dem Gravurdatenspeicher (10) in Abhängigkeit von den xy-Ortskoordinaten der aktuellen Gravierorte über eine Leitung (15). Das Steuerwerk (14) erzeugt außerdem das Vibrationssignal R auf einer Leitung (16) mit der für die Erzeugung des Gravurrasters erforderlichen Frequenz.

Zur Gravur von Probenäpfchen bei einer Probegravur, die vor der eigentlichen Gravur des Druckzylinders (1) stattfindet, weist die Graviermaschine einen Probegravurrechner (19) auf, der die erforderlichen Gravurdaten GD*, welche die geometrischen Sollabmessungen der zu gravierenden Probenäpfchen darstellen, als digital/analog gewandelte Bildsignalwerte B an den Gravierverstärker (8) liefert.

Zur Aufnahme eines Videobildes der bei der Probegravur erzeugten Probenäpfchen ist ein in Achsrichtung des Druckzylinders (1) verschiebbarer Meßwagen (20) mit einer Videokamera (21) vorgesehen, die über eine Leitung (22) mit einer Bildauswertestufe (23) zum Ausmessen der geometrischen Istabmessungen der Pro-

15

20

benäpfchen im Videobild verbunden ist. Der Meßwagen (20) kann automatisch über eine Spindel (24) von einem Meßwagenantrieb (25) auf die erforderlichen axialen Meßpositionen bewegt werden. Der Meßwagenantrieb (25) wird durch einen Steuerbefehl auf einer Leitung (26) von dem Steuerwerk (14) aus gesteuert. Alternativ kann die Videokamera (21) auch im Bereich des Gravierorgans (3) angeordnet werden.

Die in der Bildauswertestufe (23) ermittelten geometrischen Istabmessungen der gravierten Probenäpfchen werden als Meßwerte M über eine Leitung (27) an den Probegravurrechner (19) übertragen. In dem Probegravurrechner (19) werden durch Vergleich der geometrischen Istabmessungen mit den vorgegebenen geometrischen Sollabmessungen elektrische Einstellwerte E für die Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" gewonnen, die dem Gravierverstärker (8) über eine Leitung (28) zugeführt werden. Mit Hilfe der elektrischen Einstellwerte E werden das Vibrationssignal R und das Graviersignal G in dem Gravierverstärker (8) derart kalibriert, daß die bei der späteren Gravur des Druckzylinders (1) tatsächlich erzeugten Näpfchen die für eine tonwertrichtige Gravur erforderlichen geometrischen Sollabmessungen aufweisen. Die Kalibrierung kann manuell, vorzugsweise aber automatisch durch eine dynamische Regelung erfolgen, die vor oder während der eigentlichen Druckformherstellung stattfinden kann. Die erfindungsgemäße Kalibrierung bezüglich der Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" besteht aus aufeinanderfolgenden Zyklen oder Abläufen, wobei ein Ablauf aus folgenden Schritten [A] bis [F] besteht:

- 25 [A] Eingabe der elektrischen Einstellwerte E_n für die einzelnen Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" eines Ablaufs (n),
 - [B] Durchführung einer Probegravur mit den eingegebenen Einstellwerten En,
 - [C] Ausmessen der geometrischen Istabmessungen der gravierten Probenäpfchen.
- 30 [D] Vergleich der geometrischen Istabmessungen mit den vorgegebenen Sollabmessungen,
 - [E] Bereitstellung von Übertragungskoeffizienten, welche die Zusammenhänge zwischen den Änderungen der elektrischen Signalwerte und den daraus re-

10

15

sultierenden Änderungen der geometrischen Abmessungen der gravierten Näpfchen wiedergeben, und

[F] Ermittlung von Differenzwerten ΔE aus den geometrischen Istabmessungen und den Sollabmessungen der gravierten Probenäpfchen und den Übertragungskoeffizienten sowie Berechnung von neuen Einstellwerten aus den Differenzwerten ΔE gemäß Gleichung $E_{n+1} = E_n + \Delta E$ für den nachfolgenden Ablauf (n+1).

Die einzelnen Schritte [A] bis [F] eines Ablaufs werden nachfolgend näher erläutert.

Schritt [A]

In dem Schritt [A] werden die elektrischen Einstellwerte E_R , E_L , E_T und E_M für die einzelnen Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" in den Gravierverstärker (8) eingegeben, wobei die Einstellwerte E_R die Amplitude des Vibrationssignals R, die Einstellwerte E_L und E_T die Graviersignalwerte G_L und G_T für "Licht" und "Tiefe" sowie die Einstellwerte E_M den Graviersignalwert G_M für die Korrektur eines Mitteltons steuern.

20

30

In dem Ablauf I sind die Einstellungswerte E_I im allgemeinen Erfahrungswerte, in den folgenden Abläufen (n+1) die jeweils im Schritt [E] des vorangegangenen Ablaufs (n) berechneten Einstellwerte E_{n+1} .

25 Schritt [B]

Im Schritt [B] wird eine Probegravur mit den im Schritt [A] eingegebenen Einstellwerten E_{Rn}, E_{Ln}, E_{Tn} und E_{Mn} durchgeführt. Zur Erzeugung der Probenäpfchen ruft der Probegravurrechner (19) beispielsweise die Gravurdaten GD* für die Sollwerte "Tiefe", "Licht" und für mindestens einen zwischen den Tonwerten "Licht" und "Tiefe" liegenden "Mittelton" auf. Die Gravurdaten GD* repräsentieren die vorgegebenen geometrischen Sollabmessungen der Probenäpfchen, beispielsweise die

Soll-Querdiagonalen d'QL, d'QT und d'QM sowie bei Probenäpfchen mit Durchstich die Breite d'K des Durchstichs oder Kanals. Die aufgerufenen Gravurdaten GD* werden in das Graviersignal G für das Gravierorgan (3) umgesetzt. Das Gravierorgan (3) graviert auf nebeneinander liegenden Gravierlinien (29) mindestens ein Probenäpfchen (30) für "Licht" (L), "Tiefe" (T) und "Mittelton" (M). Vorzugsweise werden auf jeder Gravierlinie (29) mehrere gleiche Probenäpfchen (30) graviert, beispielsweise über einen wählbaren Gravierlinienbereich.

Schritt [C]

10

5

In dem Schritt [C] nimmt die Videokamera (21) ein Videobild der gravierten Probenäpfchen (30) auf, um in der Bildauswertestufe (23) anhand des Videobildes die geometrischen Istabmessungen, nämlich die Querdiagonalen d"QL, d"QT, d"QM und die Breite d"K des Durchstichs der gravierten Probenäpfchen (30) für "Licht", "Tiefe" und "Mittelton" auszumessen und als Meßwerte M an den Probegravurrechner (19) weiterzuleiten. Ein Verfahren zur automatischen Auswertung eines Videobildes zwecks Ermittlung der geometrischen Abmessungen von Probenäpfchen ist beispielsweise ausführlich in der WO 98/55302 A (PCT/DE 98/01441) erläutert.

20

25

30

Schritt [D]

In dem Schritt [D] werden die geometrischen Istabmessungen d'_{QL} , d'_{QT} , d'_{QM} und d'_{K} und die entsprechenden geometrischen Sollabmessungen d'_{QL} , d'_{QT} , d'_{QM} und d'_{K} miteinander verglichen und anhand des Vergleichs entschieden, ob ein weiterer Ablauf zur Optimierung der Kalibrierung folgen muß oder die Kalibrierung bereits beendet werden kann. Die Kalibrierung wird beispielsweise dann abgeschlossen, wenn entweder die gemessenen Istabmessungen mit den Sollabmessungen übereinstimmen oder wenn die erreichten Istabmessungen innerhalb eines vorgegebenen Toleranzbereichs um die vorgegebenen Sollabmessungen liegen. Anstelle der Querdiagonalen d_{QL} , d_{QT} und d_{QM} der Näpfchen können auch deren Längsdiagonalen untersucht werden.

Schritt [E]

Im Schritt [E] werden Übertragungskoeffizienten "f" bereitgestellt, welche die funktionellen Zusammenhänge zwischen den Änderungen der elektrischen Signalwerte ΔR , ΔG_L , ΔG_T und ΔG_M und den daraus resultierenden Änderungen der geometrischen Abmessungen Δd_{QL} , Δd_{QT} , Δd_{QM} und Δd_K der gravierten Näpfchen berücksichtigen. Diese funktionsmäßigen Zusammenhänge werden nachfolgend erläutert.

10

Eine Änderung des Vibrationssignals ΔR zur Kalibrierung des Parameters "Vibration" beeinflußt die Querdiagonale d_{QT} und den Durchstich d_K eines den Tonwert "Tiefe" repräsentierenden Näpfchens nach folgender Beziehung (I):

15
$$\Delta(d_{QT} - d_K) = f(R) \times \Delta R$$
 (I)

Zusätzlich nimmt eine Änderung des Vibrationssignals ΔR Einfluß auf die Querdiagonalen d_{QL} , d_{QT} und d_{QM} der die Tonwerte "Licht", "Tiefe" und "Mittelton" repräsentierenden Näpfchen nach folgenden Beziehungen (II), (III) und (IV):

$$\Delta d_{QL}(R) = f_L(R) \times \Delta R \qquad (II)$$

$$\Delta d_{QT}(R) = f_T(R) \times \Delta R$$
 (III)

$$\Delta d_{QM}(R) = f_M(R) \times \Delta R$$
 (IV)

Eine Änderung des Graviersignalwertes ΔG_L zur Kalibrierung des Parameters "Licht" beeinflußt die Querdiagonale d_{QL} eines den Tonwert "Licht" repräsentierenden Näpfchens nach folgender Beziehung (V):

$$\Delta d_{QL} = 1/f(G_L) \times \Delta G_L$$
 (V)

15

20

25

30

Zusätzlich nimmt eine Änderung des Graviersignalwertes ΔG_L Einfluß auf die Querdiagonale d_{QM} eines den Tonwert "Mittelton" repräsentierenden Näpfchens nach folgender Beziehung (VI):

$$\Delta d_{QM}(G_L) = f_M(G_L) \times \Delta G_L \quad (VI)$$

Eine Änderung des Graviersignalwertes ΔG_T zur Kalibrierung des Parameters "Tiefe" beeinflußt die Querdiagonale d_{QT} eines den Tonwert "Tiefe" repräsentierenden Näpfchens nach folgender Beziehung (VII):

$$\Delta d_{QT} = 1/f(G_T) \times \Delta G_T$$
 (VII)

Zusätzlich nimmt eine Änderung des Graviersignalwertes ΔG_T Einfluß auf die Querdiagonale d_{QM} eines den Tonwert "Mittelton" repräsentierenden Näpfchens nach folgender Beziehung (VIII):

$$\Delta d_{OM}(G_T) = f_M(G_T) \times \Delta G_T$$
 (VIII)

Durch eine Korrektur des Mitteltons wird die mechanische Abnutzung des Gravierstichels eines Gravierorgans, die sich insbesondere durch ein verkleinertes Näpfchenvolumen bei einen Mittelton repräsentierenden Näpfchen bemerkbar macht, korrigiert. Eine Änderung des Graviersignalwertes ΔG_M zur Mitteltonkorrektur beeinflußt die Querdiagonale d_{QM} eines den Mittelton repräsentierenden Näpfchens nach folgender Beziehung (IV):

$$\Delta d_{OM} = 1/f(G_M) \times \Delta G_M$$
 (IX)

Unter der im beschriebenen Ausführungsbeispiel gemachten Annahme, daß die Zusammenhänge näherungsweise linear sind, ist "f" jeweils ein Übertragungskoeffizient. Für den Fall, daß die funktionalen Zusammenhänge jedoch nicht linear sein sollten, kann "f" jeweils auch eine Übertragungsfunktion sein. Die angegebenen

Zusammenhänge sind direkt von der Art der Signalbearbeitung abhängig. Durch eine andere Signalbearbeitung kann sich der Umfang der funktionalen Zusammenhänge ändern.

Die verschiedenen Übertragungskoeffizienten f in den Beziehungen (I) bis (IX), welche die Gesamtübertragungsfunktion der Graviermaschine zwischen den eingangsseitigen elektrischen Einstellwerten und den ausgangsseitigen geometrischen Abmessungen der gravierten Näpfchen wiedergeben, werden in zweckmäßiger Weise vor der Kalibrierung anhand von Probegravuren ermittelt und zur späteren Verwendung in dem Probegravurrechner (19) gespeichert.

Schritt [F]

15

30

In dem Schritt [E] werden jeweils für den nachfolgenden Ablauf (n+1) ein neuer Vibrationssignalwert R_{n+1} sowie neue Graviersignalwerte G_{Ln+1} , G_{Tn+1} und G_{Mn+1} für die einzelnen Parameter "Vibration", "Licht", "Tiefe" und "Mittelton" berechnet.

Parameter "Vibration"

Zunächst wird unter Berücksichtigung der Beziehung (I) aus den gemessenen Istabmessungen d'_{QT} und d'_K, den Sollabmessungen d'_{QT} und d'_K und dem zuvor ermittelten Übertragungskoeffizienten f(R) ein Differenzwert ΔR für das Vibrationssignals R nach Gleichung (X) berechnet.

25
$$\Delta R = 1/f(R) [(d'_{QT} - d'_{K}) - (d''_{QT} - d''_{K})]$$
 (X)

Dann wird der Vibrationssignalwert R_{n+1} für den neuen Ablauf (n+1) aus dem nach Gleichung (X) ermittelten Differenzwert ΔR und dem Vibrationssignalwert R_n des vorangegangenen Ablaufs (n) nach Gleichung (XI) ermittelt.

$$R_{n+1} = R_n + \Delta R$$
 (XI)

n Einstellwert E_R ben.

r gemessenen), die sich aufung (II) ergeben

ch der Gravierreicht wird.

nalen d*_{QL} von

weichung ∆d_{QL} .ksichtigung des g (XIV) berechnet.

f (n+1) gemäß

wert G_{Ln+1} wird durch einen entsprechenden Einstellwert E_L in \Rightarrow r (8) für einen neuen Ablauf (n+1) eingegeben.

iktive Querdiagonale d^*_{QT} als Summe aus der gemessenen $_T$ und einer Querdiagonalenänderung $\Delta d_{QT}(R)$, die sich auf- ΔR des Vibrationssignals gemäß der Beziehung (III) ergeben (XVI) berechnet.

+
$$\Delta d_{QT}(R)$$
 (XVI)

Querdiagonalen d^*_{QT} wird festgestellt, wie sich der Gravierern muß, damit die Soll-Querdiagonale d'_{QT} erreicht wird.

die Abweichung Δd_{QT} der fiktiven Querdiagonalen d*_{QT} von nalen d'_{QT} nach Gleichung (XVII) ermittelt.

nhang (VII) wird dann die zur Korrektur der Abweichung Δd_{QT} ung des Graviersignalwertes ΔG_T unter Berücksichtigung des bertragungskoeffizienten $f(G_T)$ nach Gleichung (XVIII) berech-

·)
$$\times \Delta d_{QT}$$
 (XVIII)

er neue Graviersignalwert G_{Tn+1} für den Ablauf (n+1) gemäß

+
$$\Delta G_T$$
 (IXX)

15

20

25

Dieser Graviersignalwert G_{Tn+1} wird durch einen entsprechenden Einstellwert E_T in den Gravierverstärker (8) für einen neuen Ablauf (n+1) eingegeben.

5 Parameter "Mittelton"

Zunächst wird eine fiktive Querdiagonale d* $_{QM}$ als Summe aus der gemessenen Querdiagonalen d" $_{QM}$ und den Querdiagonalenänderungen $\Delta d_{QM}(R)$, $\Delta d_{QM}(G_L)$ und $\Delta d_{QM}(G_T)$ nach Gleichung (XX) berechnet. Die Querdiagonalenänderungen $\Delta d_{QM}(R)$, $\Delta d_{QM}(G_L)$ und $\Delta d_{QM}(G_T)$ ergeben sich dabei aufgrund der Änderung ΔR des Vibrationssignals R gemäß der Beziehung (IV) und der Änderungen ΔG_L und ΔG_T des Graviersignalwerte G gemäß der Beziehungen (VI) und (VIII).

$$d^*_{QM} = d^*_{QM} + \Delta d_{QM}(R) + \Delta d_{QM}(G_L) + \Delta d_{QM}(G_T) \qquad (XX)$$

Mit Hilfe der fiktiven Querdiagonalen d^*_{QM} wird festgestellt, wie sich der Graviersignalwert ΔG_M ändern muß, damit die Soll-Querdiagonale d^*_{QM} erreicht wird.

Dazu wird zunächst die Abweichung Δd_{QM} der fiktiven Querdiagonalen d* $_{QM}$ von der Soll-Querdiagonalen d' $_{QM}$ nach Gleichung (XXI) ermittelt.

$$\Delta d_{QM} = d^*_{QM} - d'_{QM}$$
 (XXI)

Aus dem Zusammenhang (IV) wird dann die zur Korrektur der Abweichung Δd_{QM} erforderliche Änderung des Graviersignalwertes ΔG_M unter Berücksichtigung des zuvor ermittelten Übertragungskoeffizienten $f(G_M)$ nach Gleichung (XXII) berechnet.

$$\Delta G_{M} = f(G_{M}) \times \Delta d_{QM}$$
 (XXII)

10

15

20

25

30

Damit ergibt sich der neue Graviersignalwert G_{Mn+1} für den Ablauf (n+1) gemäß Gleichung (XXIII) zu:

$$G_{Mn+1} = G_{Mn} + \Delta G_M$$
 (XXIII)

Dieser Graviersignalwert G_{Mn+1} wird durch einen entsprechenden Einstellwert E_{M} in den Gravierverstärker (8) für einen neuen Ablauf (n+1) eingegeben.

Die einzelnen Abläufe werden unter Beibehaltung der Übertragungskoeffizienten f solange wiederholt, bis festgestellt wird, daß entweder die gemessenen Istabmessungen mit den Sollabmessungen übereinstimmen oder daß die erreichten Istabmessungen innerhalb eines vorgegebenen Toleranzbereichs um die vorgegebenen Sollabmessungen liegen.

Um die Anzahl der einzelnen Abläufe zu verkleinern und damit eine schnellere Kalibrierung zu erreichen, wird als vorteilhafte Weiterbildung vorgeschlagen, im Schritt [D] mindestens innerhalb einer Ablaufs (n), vorzugsweise innerhalb des zweiten Ablaufs II, die Differenzen zwischen den Sollabmessungen d' $_{QT}$, d' $_{QL}$, d' $_{QM}$ und d' $_{K}$ und den jeweils erreichten Istabmessungen d" $_{QT}$, d" $_{QL}$, d" $_{QM}$ und d" $_{K}$ festzustellen und, falls die Differenzen größer als ein vorgegebener Toleranzbereich unterhalb der Sollabmessungen ist, im Sinne einer schnelleren Annäherung der Istabmessungen an die Sollabmessungen im Schritt [E] verbesserte Übertragungskoeffizienten f' zu ermitteln und dann im Schritt [F] anhand der neuen Übertragungskoeffizienten f' einen korrigierten Vibrationssignalwert R_{n+1} sowie korrigierte Graviersignalwerte G_{Ln+1} , G_{Tn+1} und G_{Mn+1} für den nachfolgenden Ablauf (n+1) zu berechnen, um eine schnelle Kalibrierung zu erreichen. Die verbesserten Übertragungskoeffizienten f' können gespeichert und in vorteilhafter Weise für eine spätere Kalibrierung vor der Gravur eines neuen Druckzylinders (1) verwendet werden.

Die Ermittlung der verbesserten Übertragungskoeffizienten f', welche die Zusammenhänge zwischen den eingestellten elektrischen Einstellwerten E_n (R_n , G_{Ln} , G_{Tn} ,

 G_{Mn}) und den gemessenen geometrischen Abmessungen d"_n (d"_{QL}, d"_{QT}, d"_{QM}, d"_K) wiedergeben, erfolgt durch Differenzbildung zwischen den Einstellwerte E_n und E_{n+1} und durch Differenzbildung und zwischen den gemessenen geometrischen Abmessungen d"_n und d"_{n+1} von zwei aufeinanderfolgenden Abläufen (n) und (n+1) nach folgendem allgemeinen Schema:

Ablauf n: Einstellwert $E_n \Rightarrow f \Rightarrow$ gemessene Abmessungen d_n

Ablauf (n+1): Einstellwert $E_{n+1} \Rightarrow f \Rightarrow gemessene$ Abmessungen d_{n+1}

10 Differenzbildung: $\Delta(E_n - E_{n+1}) \Rightarrow f' \Rightarrow \Delta(d''_n - d''_{n+1})$

Die Ermittlung eines verbesserten Übertragungskoeffizienten f wird am Beispiel des Parameters "Vibration" näher erläutert.

Ein in dem ersten Ablauf I eingegebener erster Vibrationssignalwert R_I ergibt bei der ersten Messung die geometrischen Abmessungen d"_{QTI} und d"_{KI}. Ein in dem zweiten Ablauf II eingegebener zweiter Vibrationssignalwert R_{II} ergibt bei der zweiten Messung die geometrischen Abmessungen d"_{QTII} und d"_{KII}. Nach Differenzbildung läßt sich der verbesserte Übertragungskoeffizient f für den Parameter "Vibration" bei bekanntem ΔR und bekannten geometrischen Abmessungen gemäß Gleichung (XIV) berechnen.

$$\Delta R = (R_{II} - R_{I}) = f'[(d''_{QTII} - d''_{QTI}) - (d''_{KII} - d''_{KI})]$$
 (XIV)

Die Ermittlung verbesserter Übertragungskoeffizienten f' für die anderen Parameter "Licht", "Tiefe" und "Mittelton" läuft analog ab.

15

20

25

30

Neue Patentansprüche

- Verfahren zur Kalibrierung eines Gravierverstärkers in einer elektronischen Graviermaschine zur Gravur von Druckzylindern, bei dem
 - a))aus Gravurwerten (GD), welche Solltonwerte repräsentieren, und einem periodischen Vibrationssignal (V) in einem durch Signalwerte (R, G) einstellbaren Gravierverstärker (8) ein Graviersignal (G) zur Ansteuerung eines Gravierorgans (3) gewonnen wird,
 - b) das Gravierorgan (3) in den Druckzylinder (1) Näpfchen graviert, deren Istabmessungen gravierte Isttonwerte repräsentieren,
 - c) Übertragungsfunktionen (f) ermittelt werden, welche die Zusammenhänge zwischen am Gravierverstärker (8) eingestellten Änderungen der Signalwerte (R, G) und den daraus resultierenden Änderungen der Istabmessungen der Näpfchen wiedergeben,
 - d) Signalwerte (R, G_L, G_T, G_M) zur Änderung mindestens eines Parameters "Vibration", "Licht", "Tiefe" oder "Mittelton" am Gravierverstärker (8) eingestellt werden,
 - e) mit den Signalwerten (R, G_L, G_T, G_M) Näpfchen (33) für vorgegebene Sollabmessungen graviert und deren Istabmessungen ausgemessen werden.
 - f) aus den Istabmessungen und den Sollabmessungen der Näpfchen (33) unter Berücksichtigung der Übertragungsfunktionen (f) Differenzwerte (ΔR , ΔG_L , ΔG_T , ΔG_M) ermittelt werden,
 - g) die Signalwerte (R, G_L , G_T , G_M) durch Addition der Differenzwerte (ΔR , ΔG_L , ΔG_T , ΔG_M) korrigiert werden und
 - h) die Abläufe d) bis g) jeweils mit den korrigierten Signalwerten (R, G_L, G_T, G_M) solange wiederholt werden, bis die Istabmessungen der Näpfchen (33) mindestens innerhalb eines Toleranzbereichs um die Sollabmessungen liegen, <u>dadurch gekennzeichnet</u>, daß zur Verkürzung der Kalibrierungszeit
 - i) bei jedem Ablauf d) bis g) die Istabmessungen der Näpfchen (33) mit den Sollabmessungen verglichen werden,
 - j) falls die Istabmessungen außerhalb des Toleranzbereichs liegen, die Übertragungsfunktionen (f) neu berechnet werden und

10

15

20

25

- k) die Differenzwerte (ΔR , ΔG_L , ΔG_T , ΔG_M) unter Berücksichtigung der neu berechneten Übertragungsfunktionen (f') ermittelt werden und
- I) die Signalwerte (R, G_L , G_T , G_M) mit den neuen Differenzwerten (ΔR , ΔG_L , ΔG_T , ΔG_M) korrigiert werden.
- 2. Verfahren nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß die Berechnung der neuen Übertragungsfunktionen (f') jeweils durch Differenzbildung zwischen den eingestellten Signalwerten (R, G_L, G_T, G_M) und durch Differenzbildung zwischen den funktionsmäßig zugehörigen Istabmessungen der Näpfchen (33) von zwei aufeinander folgenden Abläufen d) bis g) erfolgt.
- Verfahren nach Anspruch 1 oder 2, <u>dadurch gekennzeichnet</u>, daß die Abmessung eines Näpfchens (33) die Querdiagonalen (d_Q), die Längsdiagonale (d_L) und gegebenenfalls der Durchstich (d_K) ist.
- 4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, <u>dadurch gekennzeichnet</u>, daß der Differenzwert (ΔR) des Vibrationssignalwertes (R) für den Parameter "Vibration" aus der Differenz zwischen den Istabmessungen (d"_{QT}, d"_K) und den Sollabmessungen (d'_{QT}, d'_K) eines den Tonwertbereich "Tiefe" repräsentierenden Näpfchens ermittelt wird.
- 5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, <u>dadurch gekennzeichnet</u>, daß
 - eine fiktive Querdiagonale (d*_{QL}) für ein den Tonwertbereich "Licht" repräsentierendes Näpfchen als Summe aus der gemessenen Querdiagonalen (d"_{QL}) und einer Querdiagonalenänderung (Δd_{QL}(R)), die sich aufgrund der Änderung (ΔR) des Vibrationssignals (R) ergibt,
 - die Abweichung (Δd_{QL}) der fiktiven Querdiagonalen (d*_{QL}) von der Soll-Querdiagonalen (d'_{QL}) ermittelt wird und

15

20

25

- der Differenzwert (ΔG_L) des Graviersignalwertes (G_L) für den Parameter
 "Licht" aus der festgestellten Abweichung (Δd_{QL}) und der Übertragungsfunktion [f(G_L); f'(G_L)] berechnet wird, welche den Zusammenhang zwischen einer Änderung des Graviersignalwertes (G_L) für den Parameter "Licht" und der daraus resultierenden Änderung der Querdiagonalen (d_{QL}) eines den Tonwertbereich "Licht" repräsentierenden Näpfchens (33) wiedergibt.
- Verfahren nach mindestens einem der Ansprüche 1 bis 5, <u>dadurch gekenn-</u> <u>zeichnet</u>, daß
 - eine fiktive Querdiagonale (d*_{QT}) für ein den Tonwertbereich "Tiefe" repräsentierendes Näpfchen (33) als Summe aus der gemessenen Querdiagonalen (d"_{QT}) und einer Querdiagonalenänderung (Δd_{QT}(R)), die sich aufgrund der Änderung (ΔR) des Vibrationssignals (R) ergibt,
 - die Abweichung (Δd_{QT}) der fiktiven Querdiagonalen (d*_{QT}) von der Soll-Querdiagonalen (d'_{QT}) ermittelt wird und
 - der Differenzwert (ΔG_T) des Graviersignalwertes (G_T) für den Parameter "Tiefe" aus der festgestellten Abweichung (Δd_{QT}) und der Übertragungsfunktion [f(G_T); f'(G_T)] berechnet wird, welche den Zusammenhang zwischen einer Änderung des Graviersignalwertes (G_T) für den Parameter "Tiefe" und der daraus resultierenden Änderung der Querdiagonalen (d_{QT}) eines den Tonwertbereich "Tiefe" repräsentierenden Näpfchens (33) wiedergibt.
- 7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, <u>dadurch gekennzeichnet</u>, daß
- eine fiktive Querdiagonale (d*_{QM}) für ein den Tonwertbereich "Mittelton" repräsentierendes Näpfchen (33) als Summe aus der gemessenen Querdiagonalen (d"_{QM}) und Querdiagonalenänderungen (Δd_{QM}(R); Δd_{QM}(G_L)
 Δd_{QM}(G_T)), die sich aufgrund der Änderung (ΔR) des Vibrationssignals (R) ergeben,

15

20

- die Abweichung (∆d_{QM}) der fiktiven Querdiagonalen (d*_{QM}) von der Soll Querdiagonalen (d'_{QM}) ermittelt wird und
- der Differenzwert (ΔG_M) des Graviersignalwertes (G_M) für den Parameter "Mittelton" aus der festgestellten Abweichung (Δd_{QM}) und der Übertragungsfunktion [f(G_M) f'(G_M)] berechnet wird, welche den Zusammenhang zwischen einer Änderung des Graviersignalwertes (G_M) für den Parameter "Mittelton" und der daraus resultierenden Änderung der Querdiagonalen (d_{QM}) eines den Tonwertbereich "Mittelton" repräsentierenden Näpfchens (33) wiedergibt.

8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, <u>dadurch gekennzeichnet</u>, daß

- die Zusammenhänge zwischen den Signalwerten (R, G_L, G_T, G_M) und den Istabmessungen der gravierten Näpfchen (33) annähernd linear sind und
- die Zusammenhänge durch Übertragungskoeffizienten (f; f') definiert sind.
- 9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, <u>dadurch gekennzeichnet</u>, daß die für den ersten Ablauf d) bis g) eingestellten Signalwerte (R, G_L, G_T, G_M) Erfahrungswerte sind.

09/582555 430 Rec CT/PTO 28 JUN 2000

Heidelberg

New Case No. P001316

GR 98 1005 PCT US

Inventor: Weidlich

Translation / June 21, 2000 / 1245 /5110 words

1/PM 430 A PCT/PTO 28 JUN 2000

1

Method For Calibrating an Engraving Amplifier

5

10

15

20

25

The invention relates to the field of electronic reproduction technology and relates to a method for calibrating an engraving amplifier in an electronic engraving machine for engraving printing cylinders for gravure printing.

In an electronic engraving machine, an engraving member with an engraving stylus as cutting tool moves at a rotating printing cylinder in the axial direction. The engraving stylus, which is controlled by an engraving signal, cuts a series of cells into the surface of the printing cylinder. The engraving signal is formed in an engraving amplifier by superimposing image signal values with a periodic vibration signal. While the vibration signal effects an oscillating lifting motion of the engraving stylus for the purpose of generating the engraving raster, the image values which represent the tone values between "light" and "dark" which are to be reproduced determine the geometric dimensions of the engraved cells.

So that the cells that are engraved on the printing cylinder have the desired tone values as prescribed by the image signal values, a calibration of the engraving amplifier is performed. To this end, in a test engraving process test cells are engraved for prescribed desired tone values, for instance for the desired tone values "light", "dark" and "middle tone". After the test engraving, the geometric actual dimensions of the engraved test cells are measured out and compared to the corresponding desired dimensions. Settings are calculated from the comparison of the geometric dimensions, with which settings the engraving signal is calibrated such that the geometric dimensions of the cells that are actually created in the engraving correspond to the geometric dimensions required for an engraving with the correct tone values.

In conventional calibration, the settings are prescribed, the geometric dimensions of the test cells that are engraved in test engravings are measured out, and the new settings are calculated with the aid of the measurement results essentially manually, with the setting processes and subsequent test engravings being continued until an optimal calibration is reached.

A disadvantage of the conventional procedure is that the operator must have practical experience concerning the relations between the electrical setting points and the actual geometric dimensions, which are to be expected, of the test cells, whereby numerous parameters and marginal conditions must be accounted for, such as the transmission behavior of the engraving amplifier and the engraving member, the cut angle and the degree of wear of the engraving stylus, as well as the material hardness of the surface of the printing cylinder that is to be engraved. A further disadvantage is that in the conventional procedure the individual transmission functions must be obtained in advance using a number of test engravings.

5.

10

15

20

25

It is thus the object of the present invention to improve a method for calibrating an engraving amplifier in an electronic engraving machine so as to guarantee an automatic and optimal course of calibration to the greatest extent possible, without knowledge of the individual transmission functions and marginal conditions.

This object is achieved by the features of claim 1.

Advantageous developments and further developments are given in the subclaims.

The invention is detailed below with the aid of the Figure, which represents a principal exemplifying embodiment for an electronic engraving machine for engraving printing cylinders for gravure printing. The engraving machine is a HelioKlischograph® by Hell Gravure Systems GmbH, Kiel, DE.

A printing cylinder (1) is driven to rotate by a cylinder drive (2). The engraving on the printing cylinder (1) is accomplished with the aid of an engraving member (3), which comprises an engraving stylus (4) as cutting tool.

The engraving member (3) is located on an engraving carriage (5), which is moved with the aid of a spindle (6) by an engraving carriage drive (7) in the axial direction of the printing cylinder (1).

The engraving stylus (4) of the engraving member (3) cuts a series of cells that are arranged in an engraving raster line by line into the surface of the rotating

printing cylinder (1), while the engraving carriage (5) with the engraving member (3) moves axially along the printing cylinder in the forward direction.

The engraving stylus (4) of the engraving member (3) is controlled by an engraving signal G. The engraving signal G is formed in an engraving amplifier (8) by superimposing a periodic vibration signal R with image signal values B, which represent the tone values between "light" (white) and depth (black) of the cells that are to be engraved. While the periodic vibration signal R effectuates an oscillating lifting motion of the engraving stylus (4) for generating the engraving grid, the image signal values B in connection with the amplitude of the vibration signal R determine the geometric dimensions of the engraved cells such as cross-diagonals, longitudinal diagonals, ridge widths and penetration depth.

5

10

15

20

25

The image signal values B are obtained in a D/A converter (9) from engraving data GD, which are stored in an engraving data storage unit (10) and are read out of this line by line and fed to the D/A converter (9). Each engraving location for a cell is assigned an engraving datum in the engraving raster, which contains as engraving information the tone value between the tone values "light' and "depth" that is to be engraved.

The printing cylinder (1) is allocated an XY coordinate system, whose x axis is oriented in the axial direction and whose y axis is oriented in the circumferential direction of the printing cylinder (1). The x spatial coordinates of the engraving locations on the printing cylinder (1) that are arranged in the engraving raster are generated by the engraving carriage drive (7). A position transmitter (11) that is mechanically coupled to the cylinder drive (2) generates the corresponding y spatial coordinates of the engraving locations on the printing cylinder (1). The spatial coordinates (x,y) of the engraving locations are fed to a control unit (14) via lines (12,13).

The control unit (14) controls the addressing and readout of the engraving data GD from the engraving data storage unit (10) as a function of the xy coordinates of the current engraving locations via a line (15). The control unit (14) additionally

generates the vibration signal R on a line (16) with the frequency required for generating the engraving raster.

5

10

15

20

25

For engraving test cells in a test engraving process that takes place prior to the actual engraving of the printing cylinder (1), the engraving machine comprises a test engraving computer (19), which delivers the required engraving data GD*, which represent the geometric desired dimensions of the test cells that are to be engraved, to the engraving amplifier (8) as digital/analog converted image signal values B.

To pick up a video image of the test cells that are generated in the test engraving process, a measurement carriage (20) that can be displaced in the axial direction of the printing cylinder (1) is provided with a video camera (21), which is connected via a line (22) to an image evaluating stage (23) for measuring out the geometric actual dimensions of the test cells in the video image. The measurement carriage (20) can be moved automatically to the required axial measuring positions via spindle (24) by a measurement carriage drive (25). The measurement carriage (25) is controlled by the control unit (14) by a control command on a line (26). Alternatively, the video camera (21) can also be arranged in the region of the engraving member (3).

The geometric actual dimensions of the engraved test cells, which are detected in the image evaluation stage (23), are transferred via a line (27) to the test engraving computer (19) as measurement values M. In the test engraving computer (19), electrical settings E for the parameters "vibration", "light", "depth" and "medium gradation" are obtained by comparing the geometric actual dimensions to the predetermined geometric desired dimensions, and these settings are fed to the engraving amplifier (8) via a line (28). With the aid of the electrical setting values E, the vibration signal R and the engraving signal G are so calibrated in the engraving amplifier (8) that cells which are actually generated in the subsequent engraving of the printing cylinder (1) comprise the geometric desired dimensions that are required for an engraving process that is correct in terms of tone values. The calibration can be accomplished manually, but advantageously automatically by a dynamic control

process, which can take place before or during the actual production of the printing form.

The inventive calibration with respect to the parameters "vibration", "light', "depth" and "medium gradation" consists of consecutive cycles or runs, where one run consist of the following steps [A] to [F]:

- [A] input the electrical settings E_n for the individual parameters "vibration", "light", "depth" and "medium gradation" of a run (n),
 - [B] perform a test engraving with the inputted settings E_n,
 - [C] measure out the geometric actual dimensions of the engraved test cells,
- [D] compare the geometric actual dimensions to the predetermined desired dimensions,
- [E] ready transmission coefficients reproducing the relations between the variations of the electrical signal values and the resulting variations of the geometric dimensions of the engraved cells, and
- [F] calculate difference values ΔE from the geometric actual dimensions and the desired dimensions of the engraved test cells and the transmission coefficients, and calculate new settings for the subsequent run (n+1) from the difference values ΔE according to the equation $E_{n+1} = E_n + \Delta E$.

The individual steps [A] to [F] of a run are detailed below.

20

25

5

10

15

Step A

In step [A] the electrical settings E_R , E_L , E_T and E_M for the individual parameters "vibration", "light", "depth" and "medium gradation" are inputted into the engraving amplifier (8), whereby the settings E_R control the amplitude of the vibration signal R, the settings E_L and E_T control the engraving signal values G_L and G_T for "light" and "depth", and the settings E_M control the engraving signal value G_M for correcting a medium gradation.

In run I, the settings E_I are generally experimental values; in the subsequent runs (n+1), they are the settings E_{n+1} that are computed in the step [E] of the preceding run (n).

Step [B]

5

10

15

20

25

In step [B] a test engraving process is carried out using the settings E_{Rn} , E_{Ln} , E_{Tn} and E_{Mn} that were inputted in step [A]. To generate the test cells, the test engraving computer (19) fetches the engraving data GD* for the desired values "depth", "light", and for at least one "medium gradation" between "light" and "depth", for example. The engraving data GD* represent the predetermined geometric desired dimensions of the test cells, for instance the desired cross-diagonals d_{QL} , d_{QT} and d_{QM} as well as the width d_k of the penetration or channel in test engravings with penetration. The fetched engraving data GD* are converted into the engraving signal G for the engraving member (3). The engraving member (3) engraves at least one test cell (30) for "light" (L), "depth" (T) and "medium gradation" (M) on adjacent engraving lines. Advantageously, several identical test cells (30) are engraved on every engraving line (29), for instance across a selectable engraving line region.

Step [C]

In step [C] the video camera (21) records a video image of the engraved test cells (30) in order to measure out the geometric actual dimensions, namely the cross-diagonals d"_{QL}, d"_{QT}, d"_{QM} and the width d"_K of the penetration of the engraved test cells (30) for "light", "depth" and "medium gradation", with the aid of the video image in the image evaluation stage (23) and to route these to the test engraving computer (19) as measurement values M. A method for automatic evaluation of a video image for the purpose of determining the geometric dimensions of test cells is described in depth in the PCT application PCT/DE 98/01441.

In Step [D]

In step [D] the geometric actual dimensions d"_{QL}, d"_{QT}, d"_{QM} and d'_K and the corresponding geometric desired dimensions d'_{QL}, d'_{QT}, d'_{QM} and d'_K are compared to one another, and it is decided with the aid of the comparison result whether another run is necessary for optimizing the calibration, or the calibration can be concluded already. The calibration is concluded either when the measured actual dimensions match the desired dimensions or when the actual dimensions achieved are within a predetermined tolerance range about the predetermined desired dimensions. Instead of the cross-diagonals d"_{QL}, d"_{QT}, d"_{QM} of the cells, their longitudinal diagonals can also be observed.

10

15

20

25

5

Step [E]

In step [E] transmission coefficients "f" are made available, which account for the functional relations between the variations of electrical signal values ΔR , ΔG_L , ΔG_T and ΔG_M and the resulting variations of the geometric dimensions Δd_{QL} , Δd_{QT} , Δd_{QM} and Δd_K of the engraved cells. These functional relations are described below.

A modification of the vibration signal ΔR for calibrating the parameter "vibration" influences the cross-diagonal d_{QT} and the penetration depth d_K of a cell representing the tone value "depth" according to the following relation (I):

$$\Delta(d_{OT}-d_{K})=f(R)\times\Delta R$$
 (I)

In addition, a modification of the vibration signal ΔR influences the cross-diagonals d_{QL} , d_{QT} and d_{QM} of the cells representing the tone values "light", "depth" and "medium gradation" according to the following relations (II), (III) and (IV):

$$\Delta d_{QL}(R) = f_L(R) \times \Delta R$$
 (II)

$$\Delta d_{OT}(R) = f_T(R) \times \Delta R$$
 (III)

$$\Delta d_{QM}(R) = f_M(R) \times \Delta R (IV)$$

A modification of the engraving signal value ΔG_L for calibrating the parameter "light" influences the cross-diagonal d_{QL} of a cell representing the tone value "light" according to the following relation (V):

$$\Delta d_{OL} = 1/f(G_L) \times \Delta G_L$$
 (V)

In addition, a modification of the engraving signal value ΔG_L influences the cross-diagonal d_{QM} of a cell representing the tone value "medium gradation" according to the following relation (VI):

$$\Delta d_{OM}(G_L) = f_M(G_L) \times \Delta G_L$$
 (VI)

Modification of the engraving signal value ΔG_T for calibrating the parameter "depth" influences the cross-diagonal d_{QT} of a cell representing the tone value "depth" according to the following relation (VII):

$$\Delta d_{OT} = 1/f(G_T) \times \Delta G_T$$
 (VII)

In addition, modification of the engraving signal value ΔG_T influences the cross-diagonal d_{QM} of a cell representing the tone value "medium gradation" according to the following relation (VIII):

$$\Delta d_{OM}(G_T) = f_M(G_T) \times \Delta G_T$$
 (VIII)

Correcting the medium gradation corrects the technical wear of the engraving stylus of an engraving member, which manifests itself namely by a reduced cell volume in cells representing a medium gradation. Modification of the engraving signal ΔG_M for medium gradation correction influences the cross-diagonal d_{QM} of a cell representing the medium gradation in accordance with the following relation (IV):

$$\Delta d_{OM} = 1/f(G_M) \times \Delta G_M$$
 (IX)

Under the assumption made in the described exemplifying embodiment that the relations are approximately linear, "f" is a coefficient of transmission, respectively. But in case the functional relations should not be linear, "f" can also be a respective transmission function. The given relations are directly dependent on the type of signal processing. Based on a different signal processing process, the scope of the functional relations can change.

The various coefficients of transmission f in the relations (I) to (IX), which reproduce the overall transmission function of the engraving machine between the electrical settings at the input side and the geometric dimensions of the engraved cells at the output side, are advantageously computed prior to calibration with the aid of test engravings and stored for later use in the test engraving computer (19).

25

5

10

15

20

Step [F]

In step [E] [sic], for the subsequent run (n+1) a new vibration signal value R_{n+1} and new engraving signal values G_{Ln+1} , G_{Tn+1} and G_{Mn+1} for the individual parameters "vibration", "light", "depth" and "medium gradation" are calculated.

5

10

15

Parameter "Vibration"

First, upon consideration of relation (I), a difference value ΔR for the vibration signal R is calculated from the measured actual dimensions d''_{QT} and d''_{K} , the desired dimensions d'_{QT} and d'_{K} and the transmission coefficient f(R) just calculated, in accordance with equation (X).

$$\Delta R = 1/f(R)[d'_{OT} - d'_{K}) - (d''_{OT} - d''_{K})]$$
 (X)

Next, the vibration signal value R_{n+1} for the new run (n+1) is calculated from the difference value ΔR that was calculated according to equation (X) and the vibration signal R_n of the preceding run (n), in accordance with equation (XI).

$$R_{n+1} = R_n + \Delta R \tag{XI}$$

This vibration signal value R_{n+1} is entered into the engraving amplifier (8) for a new run (n+1) by corresponding setting value E_R .

Parameter "light"

20

First, a fictive cross-diagonal d^*_{QL} is calculated as the sum of the measured cross-diagonals d''_{QL} and a cross-diagonal variation $\Delta d_{QL}(R)$, which has arisen based on the variation ΔR of the vibration signal according to relation (II), in accordance with equation (XII).

$$d^*_{QL} = d''_{QL} + \Delta d_{QL}(R)$$
 (XII)

25

With the aid of the fictive cross-diagonals d^*_{QL} , it is ascertained how to modify the engraving signal value ΔG_L in order to achieve the desired cross-diagonal d'_{QL} .

To do this, first the deviation Δd_{QL} of the fictive cross-diagonals d^*_{QL} from the desired cross-diagonals d'_{QL} is calculated according to equation (XIII).

$$\Delta d_{OL} = d^*_{OL} - d'_{OL} \qquad (XIII)$$

From the relation (V), the modification of the engraving signal value ΔG_L that is required for the correction of the deviation Δd_{QL} is then calculated upon consideration of the previously calculated transmission coefficient $f(G_L)$, in accordance with equation (XIV).

$$\Delta G_L = f(G_L) \times \Delta d_{OL}$$
 (XIV)

5

15

25

Thus the new engraving signal value G_{Ln+1} for the run (n+1) derives in accordance with equation (XV).

$$G_{Ln+1} = G_{Ln} + \Delta G_{L} \qquad (XV)$$

This engraving signal value G_{Ln+1} is entered into the engraving amplifier (8) for a new run by a corresponding setting value E_L .

Parameter "depth"

First, a fictive cross-diagonal d^*_{QT} is calculated as the sum of the mesasured cross-diagonals d''_{QT} and a cross-diagonal variation $\Delta d_{QT}(R)$, which has arisen based on the variation ΔR of the vibration signal according to relation (III), in accordance with equation (XVI).

$$d^*_{OT} = d''_{OT} + \Delta d_{OT}(R)$$
 (XVI)

With the aid of the fictive cross-diagonals d^*_{QT} , it is ascertained how to modify the engraving signal value ΔG_T in order to achieve the desired cross-diagonal d'_{OT} .

To do this, first the deviation Δd_{QT} of the fictive cross-diagonals d^*_{QT} from the desired cross-diagonal d'_{QT} is calculated according to equation (XVII).

$$\Delta d_{OT} = d*_{OT} - d'_{OT} \qquad (XVII)$$

From the relation (VII), the modification of the engraving signal value ΔG_T that is required for the correction of the deviation Δd_{QT} is then calculated upon consideration of the previously calculated transmission coefficient $f(G_T)$, in accordance with equation (XVIII).

$$\Delta G_T = f(G_T) \times \Delta d_{OT}$$
 (XVIII)

Thus the new engraving signal value G_{Ln+1} for the run (n+1) derives in accordance with equation (IXX).

$$G_{Tn+1} = G_{Tn} + \Delta G_{T} \qquad (IXX)$$

5

10

15

20

25

This engraving signal value G_{Tn+1} is entered into the engraving amplifier (8) for a new run by a corresponding setting value E_T .

Parameter "medium gradation"

First, a fictive cross-diagonal d^*_{QM} is calculated as the sum of the measured cross-diagonals d''_{QM} and the cross-diagonal variations $\Delta d_{QM}(R)$, $\Delta d_{QM}(G_L)$ and $\Delta d_{QM}(G_T)$, in accordance with equation (XX). The cross-diagonal variations $\Delta d_{QM}(R)$, $\Delta d_{QM}(G_L)$ and $\Delta d_{QM}(G_T)$ arise based on the modification ΔR of the vibration signal R in accordance with the relation (IV) and the variations ΔG_L and ΔG_T of the engraving signal values G, in accordance with the relations (VI) and (VIII).

$$d*_{QM} = d''_{QM} + \Delta d_{QM}(R) + \Delta d_{QM}(G_L) + \Delta_{QM}(G_T)$$
 (XX)

With the aid of the fictive cross-diagonals d^*_{QM} , it is ascertained how to modify the engraving signal value ΔG_M in order to achieve the desired cross-diagonal d'_{QM} .

To do this, first the deviation Δd_{QM} of the fictive cross-diagonals d^*_{QM} from the desired cross-diagonals d'_{QM} is calculated according to equation (XXI).

$$\Delta d_{OM} = d^*_{OM} - d'_{OM} \qquad (XXI)$$

From the relation (IV), the modification of the engraving signal ΔG_M that is required for the correction of the deviation Δd_{QM} is then calculated upon consideration of the previously calculated transmission coefficient $f(G_M)$, in accordance with equation (XXII).

$$\Delta G_{M} = f(G_{M}) \times \Delta d_{OM}$$
 (XXII)

Thus the new engraving signal value G_{Mn+1} for the run (n+1) derives in accordance with equation (XXIII):

$$G_{Mn+1} = G_{Mn} + \Delta G_{M}$$
 (XXIII)

This engraving signal value G_{Mn+1} is entered into the engraving amplifier (8) for a new run by a corresponding setting value E_{M} .

The individual runs are repeated while maintaining the transmission coefficients f until it is ascertained either that the measured actual dimensions match the desired dimensions or that the actual dimensions achieved are within a predetermined tolerance range about the predetermined desired dimensions.

5

10

15

20

25

In order to reduce the number of individual runs and thus achieve a more rapid calibration, it is suggested as an advantageous development to determine the differences between the desired dimensions d'_{QT} , d'_{QL} , d'_{QM} and d'_{K} and the respectively achieved actual dimensions d''_{QT} , d''_{QL} , d''_{QM} and d''_{K} in step [D], at least within one run (n), preferably within the second run II, and, if the differences is [sic] greater than a predetermined tolerance range below the desired dimensions, to compute improved transmission coefficients f' in step [E] in the sense of a more rapid approximating of the desired dimensions by the actual dimensions, and then in step [F] to calculate a corrected vibration signal value R_{n+1} and corrected engraving signal values G_{Ln+1} , G_{Tn+1} and G_{Mn+1} for the subsequent run (n+1) with the aid of the new transmission coefficients f', in order to achieve a fast calibration. The improved transmission coefficients f' can be stored and used advantageously for a later calibration prior to the engraving of a new printing cylinder (1).

The determining of the improved transmission coefficients f', which reproduce relations between the adjusted electrical settings E_n (R_n , G_{Ln} , G_{Tn} , G_{Mn}) and the measured geometric dimensions $d''_n(d''_{QL}, d''_{QT}, d''_{QM}, d''_{K})$, is accomplished by difference formation between the settings E_n and E_{n+1} and by difference formation between the measured geometric dimensions d_n and d_{n+1} of two consecutive runs (n) and (n+1) by the following general schema:

run n: setting E_n $\Rightarrow f \Rightarrow$ measured dimensions d''_n run (n+1): setting E_{n+1} $\Rightarrow f \Rightarrow$ measured deviations d''_{n+1}

Difference formation: $\Delta(E_n - E_{n+1})$ $\Rightarrow f' \Rightarrow \Delta(d''_n - d''_{n+1})$

The calculation of an improved transmission coefficient f' is described further in the example of the parameter "vibration".

A first vibration signal value R_I which is entered in the first run I yields the geometric dimensions d_{QTI} and d_{KI} in the first measurement. A second vibration signal value R_{II} which is entered in the second run II yields the geometric dimensions d_{QTII} and d_{KII} in the second measurement. Upon difference formation, the improved transmission coefficient f' for the parameter "vibration" can be calculated in accordance with equation (XIV), given known ΔR and known geometric dimensions:

$$\Delta R = (R_{II} - R_{I}) = f'[(d_{QTII} - d_{QTI}) - (d_{KII} - d_{KI})]$$
 (XIV)

5

10

Improved transmission coefficients f' are determined analogously for the other parameters "light", "depth", and "medium gradation".

Patent Claims

10

15

- 1. Method for calibrating an engraving signal in an electronic engraving machine for engraving printing cylinders for gravure printing, in which
- an engraving signal (G) for actuating the engraving stylus (4) of an engraving member (3) is acquired in an engraving amplifier (8) from engraving values (GD) representing desired tone values between "light' and "depth" and a periodic vibration signal (R) for generating an engraving raster,
 - the engraving stylus engraves (1) a series of cells that are arranged in the engraving raster into the printing cylinder, the geometric dimensions of which cells determines the engraved actual tone values, and
 - the engraving amplifier (8) is calibrated such that the engraved actual tone values correspond to the desired tone values that are to be engraved, <u>characterized in that</u> a) transmission functions (f) are calculated, which reproduce the relations between variations, which are adjusted at the engraving amplifier (8), of the signal values (R,
 - G_L , G_T , G_M) and the resulting variations of the geometric actual dimensions of the engraved cells,
 - b) signal values (R, G_L, G_T, G_M) for modifying at least one parameter "vibration", "light", "depth", or "medium gradation" are set at the engraving amplifier (8),
- c) with the signal values (R, G_L , G_T , G_M) that are set in the engraving amplifier (8), test cells (33) are engraved for predetermined desired tone values, and their geometric actual dimensions are measured out,
 - c) [sic] difference values (ΔR , ΔG_L , ΔG_T , ΔG_M) are calculated from the measured actual dimensions and the predetermined desired dimensions of the engraved test cells
- 25 (33) upon consideration of the computed transmission functions (f),
 - d) the signal values (R, G_L , G_T , G_M) that have been set in step b) are corrected by adding the difference values (ΔR , ΔG_L , ΔG_T , ΔG_M),

- e) the sequences b) to d) are repeated using the corrected signal values (R, G_L , G_T , G_M), respectively, until the geometric actual dimensions of the engraved test cells are at least within a tolerance range about the predetermined desired dimensions.
- 2. Method as claimed in claim 1, <u>characterized in that</u> the determination of the transmission functions (f) occurs prior to the calibration of the engraving amplifier (8).
 - 3. Method as claimed in claim 1 or 2, characterized in that
- the relations between signal values (R, G_L, G_T, G_M) that are set at the engraving amplifier (8) and the geometric actual measurements of the engraved cells are approximately linear, and
 - the relations are defined by transmission coefficients (f).
- 4. Method as claimed in at least one of the claims 1 to 3, <u>characterized in that</u> for the purpose of modifying the parameter "vibration", the vibration signal value (R) is adjusted.
- 5. Method as claimed in at least one of the claims 1 to 4, <u>characterized in that</u> to modify the parameters "light", "depth" or "medium gradation", the corresponding engraving signal value (G_L, G_T, G_M) is adjusted.
 - 6. Method as claimed in at least one of the claims 1 to 5, <u>characterized in that</u> to shorten the calibration time
- in each sequence, the measured geometric actual dimensions of the test cells (33) are compared to the predetermined desired dimensions,
 - if the measured geometric actual dimensions are below a predetermined tolerance range for the geometric desired dimensions, the transmission functions (f) are recalculated, and

- the difference values (ΔR , ΔG_L , ΔG_T , ΔG_M) are computed upon consideration of the recalculated transmission functions (f').

- 7. Method as claimed in at least one of the claims 1 to 6, <u>characterized in that</u> the recalculation of the transmission functions (f) respectively occurs by difference formation between the adjusted signal values and by difference formation between the functionally appertaining geometric actual dimensions of the cells of two successive sequences.
- 8. Method as claimed in at least one of the claims 1 to 7, <u>characterized in that</u> the geometric dimension of a cell is the cross-diagonals (d_Q), the longitudinal diagonal (d_L) and potentially the penetration depth (d_K). [sic]
- 9. Method as claimed in at least one of the claims 1 to 8, <u>characterized in that</u> the signal values that are set for the first sequence are experimental values.
 - 10. Method as claimed in at least one of the claims 1 to 9, <u>characterized in that</u> the signal values that are set for the first sequence are experimental values. [sic]
- 11. Method as claimed in at least one of the claims 1 to 10, <u>characterized in that</u> test cells (33) are engraved, which represent the tone values "light"", "depth" and "medium gradation".
- 12. Method as claimed in at least one of the claims 1 to 11, <u>characterized in that</u>
 a video image of the engraved cells (33) is recorded using a video camera (21), and
 the geometric actual dimensions of the engraved test cells (33) are acquired from the video image.

13. Method as claimed in at least one of the claims 1 to 12, <u>characterized in that</u> the difference value (ΔR) of the vibration signal value (R) for the parameter "vibration" is computed from the difference between the actual dimensions (d''_{QT} , d''_{K}) and the desired dimensions (d''_{QT} , d'_{K}) of a cell representing the tone value domain "depth".

5

15

20

- 14. Method as claimed in at least one of the claims 1 to 13, <u>characterized in that</u>
 a fictive cross-diagonal (d^*_{QL}) for a cell representing the tone value domain "light"
 [...] as the sum of the measured cross-diagonals (d''_{QL}) and a cross-diagonal variation $(\Delta d_{QL}(R))$ which arises owing to the variation (ΔR) of the vibration signal (R),
- the deviation (Δd_{QL}) of the fictive cross-diagonals (d^*_{QL}) from the desired cross-diagonals (d'_{QL}) is computed, and
 - the difference value (ΔG_L) of the engraving signal value (G_L) for the parameter "light" is computed from the determined deviation (Δd_{QL}) and the transmission function ($F(G_L)$) which represents the relation between a variation of the engraving signal value (G_L) for the parameter "light" and the resulting variation of the cross-diagonals (d_{QL}) of a cell representing the tone value domain "light".
 - 15. Method as claimed in at least one of the claims 1 to 14, <u>characterized in that</u>
 a fictive cross-diagonal (d*_{QT}) for a cell representing the tone value domain "depth"
 [...] as sum of the measured cross-diagonals (d"_{QT}) and a cross-diagonal variation (Δd_{QT}(R)) that occurs owing to the variation (ΔR) of the vibration signal (R),
 the deviation (Δd_{QT}) of the fictive cross-diagonals (d*_{QT}) from the desired cross-diagonals (d'_{QT}) is determined, and
- the difference value (ΔG_T) of the engraving signal value (G_T) for the parameter
 "depth" is computed from the determined deviation (Δd_{QT}) and the transmission function (f(G_T)), which reproduces the relation between a variation of the engraving signal value (G_T) for the parameter "depth" and the resulting variation of the cross-diagonals (d_{QT}) of a cell representing the tone value domain "depth".

- 16. Method as claimed in at least one of the claims 1 to 15, characterized in that
- a fictive cross-diagonal (d*_{QM}) for a cell representing the tone value domain "medium gradation" [...] as sum of the measured cross-diagonals (d"_{QM}) and cross-diagonal variations ($\Delta d_{QM}(R)$; $\Delta d_{QM}(G_L) \Delta d_{QM}(G_T)$) that occur owing to the variation (ΔR) of the vibration signal (R),
- the deviation (Δd_{QM}) of the fictive cross-diagonals (d^*_{QM}) from the desired cross-diagonals (d'_{QM}) is determined, and
- the difference value (ΔG_M) of the engraving signal value (G_M) for the parameter "medium gradation" is computed from the determined deviation (Δd_{QM}) and the transmission function (f(G_M)), which reproduces the relation between a variation of the engraving signal value (G_M) for the parameter "medium gradation" and the resulting variation of the cross-diagonals (d_{QM}) of a cell representing the tone value domain "medium gradation".